- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Geller, Michael R (2)
-
Geller, Michael R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Geller, Michael R (, Communications in Theoretical Physics)Abstract Any stater= (x,y,z) of a qubit, written in the Pauli basis and initialized in the pure stater= (0, 0, 1), can be prepared by composing three quantum operations: two unitary rotation gates to reach a pure state on the Bloch sphere, followed by a depolarization gate to decrease ∣r∣. Here we discuss the complementary state-preparation protocol for qubits initialized at the center of the Bloch ball,r=0, based on increasing or amplifying ∣r∣ to its desired value, then rotating. Bloch vector amplification increases purity and decreases entropy. Amplification can be achieved with a linear Markovian completely positive trace-preserving (CPTP) channel by placing the channel’s fixed point away fromr=0, making it nonunital, but the resulting gate suffers from a critical slowing down as that fixed point is approached. Here we consider alternative designs based on linear and nonlinear Markovian PTP channels, which offer benefits relative to linear CPTP channels, namely fast Bloch vector amplification without deceleration. These gates simulate a reversal of the thermodynamic arrow of time for the qubit and would provide striking experimental demonstrations of non-CP dynamics.more » « less
-
Geller, Michael R. (, Scientific Reports)Abstract Nonlinear qubit master equations have recently been shown to exhibit rich dynamical phenomena such as period doubling, Hopf bifurcation, and strange attractors usually associated with classical nonlinear systems. Here we investigate nonlinear qubit models that support tunable Lorenz attractors. A Lorenz qubit could be realized experimentally by combining qubit torsion, generated by real or simulated mean field dynamics, with linear amplification and dissipation. This would extend engineered Lorenz systems to the quantum regime, allowing for their direct experimental study and possible application to quantum information processing.more » « less
An official website of the United States government
