skip to main content

Search for: All records

Creators/Authors contains: "Gene Hwang, J. T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Benjamini and Yekutieli suggested that it is important to account for multiplicity correction for confidence intervals when only some of the selected intervals are reported. They introduced the concept of the false coverage rate (FCR) for confidence intervals which is parallel to the concept of the false discovery rate in the multiple-hypothesis testing problem and they developed confidence intervals for selected parameters which control the FCR. Their approach requires the FCR to be controlled in the frequentist’s sense, i.e. controlled for all the possible unknown parameters. In modern applications, the number of parameters could be large, as large as tens of thousands or even more, as in microarray experiments. We propose a less conservative criterion, the Bayes FCR, and study confidence intervals controlling it for a class of distributions. The Bayes FCR refers to the average FCR with respect to a distribution of parameters. Under such a criterion, we propose some confidence intervals, which, by some analytic and numerical calculations, are demonstrated to have the Bayes FCR controlled at level q for a class of prior distributions, including mixtures of normal distributions and zero, where the mixing probability is unknown. The confidence intervals are shrinkage-type procedures which are more efficient for the θis that have a sparsity structure, which is a common feature of microarray data. More importantly, the centre of the proposed shrinkage intervals reduces much of the bias due to selection. Consequently, the proposed empirical Bayes intervals are always shorter in average length than the intervals of Benjamini and Yekutieli and can be only 50% or 60% as long in some cases. We apply these procedures to the data of Choe and colleagues and obtain similar results.

    more » « less
  2. Summary

    We construct empirical Bayes intervals for a large number p of means. The existing intervals in the literature assume that variances σi2 are either equal or unequal but known. When the variances are unequal and unknown, the suggestion is typically to replace them by unbiased estimators Si2. However, when p is large, there would be advantage in ‘borrowing strength’ from each other. We derive double-shrinkage intervals for means on the basis of our empirical Bayes estimators that shrink both the means and the variances. Analytical and simulation studies and application to a real data set show that, compared with the t-intervals, our intervals have higher coverage probabilities while yielding shorter lengths on average. The double-shrinkage intervals are on average shorter than the intervals from shrinking the means alone and are always no longer than the intervals from shrinking the variances alone. Also, the intervals are explicitly defined and can be computed immediately.

    more » « less