skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "George, Gibin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Glucose biosensors are widely used for clinical, industrial, and environmental applications. Nonenzymatic electrochemical glucose biosensors based on metal oxides with a perovskite structure have exhibited high sensitivity, excellent stability, and cost efficiency. In this work, porous La–Sr–Co–Ni–O (LSCNO) nanofibers, with an ABO 3 -type perovskite structure, were prepared through optimizing the A-site and B-site elements by electrospinning, followed with calcination at 700 °C for 5 h. Characterized by scanning and transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, fabricated nanofibers were confirmed to be porous and nanosized polycrystalline grains with high crystallinity. A novel La 0.75 Sr 0.25 Co 0.5 Ni 0.5 O 3 -based nonenzymatic electrochemical biosensor was developed, which is sensitive to glucose because of an electrochemically catalytic mechanism, a mediated electron transfer involving Ni( ii )/Ni( iii ) or Co( ii )/Co( iii ), accompanying with gluconic acid complexation. The glucose biosensor presented a linear response in the range of 0.1–1.0 mM with a calibration sensitivity of 924 ± 28 μA mM −1 , a proportion of the variance of 0.9926, and a lower limit of detection of 0.083 mM, respectively, demonstrating an outstanding analytical performance. The biosensor showed no response to the most widely used anionic surfactant, sodium dodecyl sulfate, and low sensitivity to other biomolecules, such as fructose, lactose, galactose, mannose, dopamine, and ascorbic acid. A urine sample was tested by this novel nonenzymatic electrochemical biosensor by standard addition method, suggesting a potential application for clinical test. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Development of new host materials containing heavy elements for radiation detection is highly desirable. In this work, dibarium octafluorohafnate, Ba 2 HfF 8 , doped with rare-earth ions, was synthesized as cube-shaped nanocrystals via a facile hydrothermal method. The host lattice contains two Ba 2+ crystallographic sites, and dopants on these sites exhibit site-dependent photoluminescence (PL), cathodoluminescence (CL) and X-ray excited radioluminescence (RL) characteristics. Single doping contents were optimized as 25 mol% Tb 3+ and 5 mol% Eu 3+ . In Ba 2 HfF 8 :Tb 3+ –Eu 3+ codoped nanocrystals, preferrable occupation of Eu 3+ and Tb 3+ at two different Ba 2+ sites in the host lattice was observed. The nanocubes exhibited enhanced emissions over micron sized particles. In PL, the presence of Tb 3+ ions significantly enhanced the emission intensity of Eu 3+ ions due to energy transfer from the Tb 3+ to Eu 3+ ions, while under high-energy irradiation in CL or RL, Tb 3+ emission was intensified. X-ray induced RL with afterglow in seconds was observed. It was found that the codoped sample showed higher sensitivity than the singly doped sample, indicating that codoping is an effective strategy to develop a scintillator with this host structure for high-energy radiation detection. 
    more » « less
  5. null (Ed.)
  6. Background: Photoluminescent materials have been used for diverse applications in thefields of science and engineering, such as optical storage, biological labeling, noninvasive imaging,solid-state lasers, light-emitting diodes, theranostics/theragnostics, up-conversion lasers, solar cells,spectrum modifiers, photodynamic therapy remote controllers, optical waveguide amplifiers andtemperature sensors. Nanosized luminescent materials could be ideal candidates in these applications.

    Objective: This review is to present a brief overview of photoluminescent nanofibers obtainedthrough electrospinning and their emission characteristics.

    Methods: To prepare bulk-scale nanosized materials efficiently and cost-effectively, electrospinningis a widely used technique. By the electrospinning method, a sufficiently high direct-current voltageis applied to a polymer solution or melt; and at a certain critical point when the electrostatic forceovercomes the surface tension, the droplet is stretched to form nanofibers. Polymer solutions or meltswith a high degree of molecular cohesion due to intermolecular interactions are the feedstock. Subsequentcalcination in air or specific gas may be required to remove the organic elements to obtainthe desired composition.

    Results: The luminescent nanofibers are classified based on the composition, structure, and synthesismaterial. The photoluminescent emission characteristics of the nanofibers reveal intriguing featuressuch as polarized emission, energy transfer, fluorescent quenching, and sensing. An overview of theprocess, controlling parameters and techniques associated with electrospinning of organic, inorganicand composite nanofibers are discussed in detail. The scope and potential applications of these luminescentfibers also conversed.

    Conclusion: The electrospinning process is a matured technique to produce nanofibers on a largescale. Organic nanofibers have exhibited superior fluorescent emissions for waveguides, LEDs andlasing devices, and inorganic nanofibers for high-end sensors, scintillators, and catalysts. Multifunctionalitiescan be achieved for photovoltaics, sensing, drug delivery, magnetism, catalysis, andso on. The potential of these nanofibers can be extended but not limited to smart clothing, tissueengineering, energy harvesting, energy storage, communication, safe data storage, etc. and it isanticipated that in the near future, luminescent nanofibers will find many more applications in diversescientific disciplines.

     
    more » « less
  7. null (Ed.)