skip to main content

Search for: All records

Creators/Authors contains: "George, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 12, 2024
  2. The British landscape painter John Constable is considered foundational for the Realist movement in 19th-century European painting. Constable’s painted skies, in particular, were seen as remarkably accurate by his contemporaries, an impression shared by many viewers today. Yet, assessing the accuracy of realist paintings like Constable’s is subjective or intuitive, even for professional art historians, making it difficult to say with certainty what set Constable’s skies apart from those of his contemporaries. Our goal is to contribute to a more objective understanding of Constable’s realism. We propose a new machine-learning-based paradigm for studying pictorial realism in an explainable way. Our framework assesses realism by measuring the similarity between clouds painted by artists noted for their skies, like Constable, and photographs of clouds. The experimental results of cloud classification show that Constable approximates more consistently than his contemporaries the formal features of actual clouds in his paintings. The study, as a novel interdisciplinary approach that combines computer vision and machine learning, meteorology, and art history, is a springboard for broader and deeper analyses of pictorial realism. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Abstract

    The rediscovery of diatom blooms embedded within and beneath the Lake Erie ice cover (2007–2012) ignited interest in psychrophilic adaptations and winter limnology. Subsequent studies determined the vital role ice plays in winter diatom ecophysiology as diatoms partition to the underside of ice, thereby fixing their location within the photic zone. Yet, climate change has led to widespread ice decline across the Great Lakes, with Lake Erie presenting a nearly “ice-free” state in several recent winters. It has been hypothesized that the resultant turbid, isothermal water column induces light limitation amongst winter diatoms and thus serves as a competitive disadvantage. To investigate this hypothesis, we conducted a physiochemical and metatranscriptomic survey that spanned spatial, temporal, and climatic gradients of the winter Lake Erie water column (2019–2020). Our results suggest that ice-free conditions decreased planktonic diatom bloom magnitude and altered diatom community composition. Diatoms increased their expression of various photosynthetic genes and iron transporters, which suggests that the diatoms are attempting to increase their quantity of photosystems and light-harvesting components (a well-defined indicator of light limitation). We identified two gene families which serve to increase diatom fitness in the turbid ice-free water column: proton-pumping rhodopsins (a potential second means of light-driven energy acquisition) and fasciclins (a means to “raft” together to increase buoyancy and co-locate to the surface to optimize light acquisition). With large-scale climatic changes already underway, our observations provide insight into how diatoms respond to the dynamic ice conditions of today and shed light on how they will fare in a climatically altered tomorrow.

    more » « less
  4. Free, publicly-accessible full text available November 1, 2024
  5. Free, publicly-accessible full text available July 8, 2024
  6. Grand Lake St. Marys (GLSM) is a popular recreational lake located in western Ohio, United States, generating nearly $150 million in annual revenue. However, recurring algal blooms dominated by Planktothrix agardhii , which can produce harmful microcystin toxins, have raised concerns about water safety and negatively impacted the local economy. Planktothrix agardhii is host to a number of parasites and pathogens, including an obligate fungal parasite in the Chytridiomycota (chytrids). In this study, we investigated the potential of these chytrid ( Rhizophydium sp.) to infect P. agardhii blooms in the environment by modifying certain environmental conditions thought to limit infection prevalence in the wild. With a focus on temperature and water mixing, mesocosms were designed to either increase or decrease water flow compared to the control (water outside the mesocosm). In the control and water circulation mesocosms, infections were found infrequently and were found on less than 0.75% of the Planktothrix population. On the other hand, by decreasing the water flow to stagnation, chytrid infections were more frequent (found in nearly 3x as many samples) and more prevalent, reaching a maximum infection rate of 4.12%. In addition, qPCR coupled with 16S–18S sequencing was utilized to confirm the genetic presence of both host and parasite, as well as to better understand the effect of water circulation on the community composition. Statistical analysis of the data confirmed that chytrid infection was dependent on water temperature, with infections predominantly occurring between 19°C and 23°C. Additionally, water turbulence can significantly reduce the infectivity of chytrids, as infections were mostly found in stagnant mesocosms. Further, decreasing the water circulation promoted the growth of the cyanobacterial population, while increasing water agitation promoted the growth of green algae (Chlorophyta). This study starts to explore the environmental factors that affect chytrid pathogenesis which can provide valuable insights into controlling measures to reduce the prevalence of harmful algal blooms and improve water quality in GLSM and similarly affected waterbodies. 
    more » « less
    Free, publicly-accessible full text available June 19, 2024
  7. Introduction Planktothrix agardhii is a microcystin-producing cyanobacterium found in Sandusky Bay, a shallow and turbid embayment of Lake Erie. Previous work in other systems has indicated that cyanophages are an important natural control factor of harmful algal blooms. Currently, there are few cyanophages that are known to infect P. agardhii , with the best-known being PaV-LD, a tail-less cyanophage isolated from Lake Donghu, China. Presented here is a molecular characterization of Planktothrix specific cyanophages in Sandusky Bay. Methods and Results Putative Planktothrix -specific viral sequences from metagenomic data from the bay in 2013, 2018, and 2019 were identified by two approaches: homology to known phage PaV-LD, or through matching CRISPR spacer sequences with Planktothrix host genomes. Several contigs were identified as having viral signatures, either related to PaV-LD or potentially novel sequences. Transcriptomic data from 2015, 2018, and 2019 were also employed for the further identification of cyanophages, as well as gene expression of select viral sequences. Finally, viral quantification was tested using qPCR in 2015–2019 for PaV-LD like cyanophages to identify the relationship between presence and gene expression of these cyanophages. Notably, while PaV-LD like cyanophages were in high abundance over the course of multiple years (qPCR), transcriptomic analysis revealed only low levels of viral gene expression. Discussion This work aims to provide a broader understanding of Planktothrix cyanophage diversity with the goals of teasing apart the role of cyanophages in the control and regulation of harmful algal blooms and designing monitoring methodology for potential toxin-releasing lysis events. 
    more » « less
    Free, publicly-accessible full text available June 29, 2024
  8. Free, publicly-accessible full text available June 8, 2024
  9. Free, publicly-accessible full text available June 4, 2024
  10. Single crystals of the quaternary chalcogenide BaCuGdTe 3 were obtained by direct reaction of elements allowing for a complete investigation of the intrinsic electrical and thermal properties of this previously uninvestigated material. The structure was investigated by high-resolution single-crystal synchrotron X-ray diffraction, revealing an orthorhombic crystal structure with the space group Cmcm. Although recently identified as a semiconductor suitable for thermoelectric applications from theoretical analyses, our electrical resistivity and Seebeck coefficient measurements show metallic conduction, the latter revealing strong phonon-drag. Temperature dependent hole mobility reveals dominant acoustic phonon scattering. Heat capacity data reveal a Debye temperature of 183 K and a very high density of states at the Fermi level, the latter confirming the metallic nature of this composition. Thermal conductivity is relatively high with Umklapp processes dominating thermal transport above the Debye temperature. The findings in this work lay the foundation for a more detailed understanding of the physical properties of this and similar multinary chalcogenide materials, and is part of the continuing effort in investigating quaternary chalcogenide materials and their suitability for use in technological applications. 
    more » « less
    Free, publicly-accessible full text available May 25, 2024