skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gerasimchuk, Nikolay N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The molecular structure of the unsubstituted iron(III) phthalocyanine [Formula: see text]-oxo(1) dimer ((PcFe)2O) was determined by single crystal X-ray diffraction. In agreement with the earlier speculations, the dimer has a bent (Fe-O-Fe angle is 152.4[Formula: see text]) structure. The interplay between the [Formula: see text]-[Formula: see text] interactions and steric hindrances caused by the isoindole units led to the observed staggering angle of [Formula: see text]24[Formula: see text] between two phthalocyanine ligands. The high-spin iron(III) centers are located significantly above the phthalocyanine N4 planes (0.57–0.58 Å). Several DFT exchange-correlation functionals were used to calculate the absolute value and sign of the Mössbauer quadrupole splitting and antiferromagnetic coupling constant for X-ray determined geometry of (PcFe)2O. It was demonstrated that the hybrid functionals provide the correct sign of the electric field gradient and the magnitude of the antiferromagnetic coupling constant compared to the pure functionals. 
    more » « less
  2. null (Ed.)
    Isocyanoazulenes (CNAz) constitute a relatively new class of isocyanoarenes that offers rich structural and electronic diversification of the organic isocyanide ligand platform. This article considers a series of 2-isocyano-1,3-X2-azulene ligands (X = H, Me, CO2Et, Br, and CN) and the corresponding zero-valent complexes thereof, [(OC)5Cr(2-isocyano-1,3-X2-azulene)]. Air- and thermally stable, X-ray structurally characterized 2-isocyano-1,3-dimethylazulene may be viewed as a non-benzenoid aromatic congener of 2,6-dimethyphenyl isocyanide (2,6-xylyl isocyanide), a longtime “workhorse” aryl isocyanide ligand in coordination chemistry. Single crystal X-ray crystallographic {Cr–CNAz bond distances}, cyclic voltametric {E1/2(Cr0/1+)}, 13C NMR {δ(13CN), δ(13CO)}, UV-vis {dπ(Cr) → pπ*(CNAz) Metal-to-Ligand Charge Transfer}, and FTIR {νN≡C, νC≡O, kC≡O} analyses of the [(OC)5Cr(2-isocyano-1,3-X2-azulene)] complexes provided a multifaceted, quantitative assessment of the π-acceptor/σ-donor characteristics of the above five 2-isocyanoazulenes. In particular, the following inverse linear relationships were documented: δ(13COtrans) vs. δ(13CN), δ(13COcis) vs. δ(13CN), and δ(13COtrans) vs. kC≡O,trans force constant. Remarkably, the net electron withdrawing capability of the 2-isocyano-1,3-dicyanoazulene ligand rivals those of perfluorinated isocyanides CNC6F5 and CNC2F3. 
    more » « less
  3. Several complexes of “PtL 2 ” composition containing two cyanoxime anions – 2-oximino-2-cyano- N -piperidineacetamide (PiPCO − ) and 2-oximino-2-cyano- N -morpholylacetamide (MCO − ) – have been obtained and characterized both in solution and in the solid state. Complexes exist as two distinct polymorphs: monomeric yellow complexes and dark-green [PtL 2 ] n 1D polymers, while for the MCO − anion a red, solvent containing dimeric [Pt(MCO) 2 ·DMSO] 2 complex has also been isolated. The interconversion of polymorphs was investigated. The monomeric PtL 2 units are arranged into anisotropic extended solid [PtL 2 ] n polymers with the help of Pt⋯Pt metallophilic interactions. Crystal structures of monomeric PtL 2 (L = PiPCO − , MCO − ) and red dimeric [Pt(MCO) 2 ·DMSO] 2 complexes were determined and revealed the cis -arrangement of cyanoxime anions. The Pt–Pt distance in the “head-to-tail” red dimer was found to be 3.133 Å. The structure of the polymeric [Pt(PiPCO) 2 ] n compound was elucidated using the EXAFS method and evidenced the formation of Pt-wires with ∼3.15 Å intermetallic separation. The EPR spectra of both 1D polymers at variable temperatures indicate the absence of Pt( iii ) species. Both pure dark-green [PtL 2 ] n polymers showed a considerable room temperature electrical conductivity of 20–30 S cm −1 , which evidences the formation of a mixed valence Pt( ii )/Pt( iv ) system. We discovered that these 1D polymeric [PtL 2 ] n complexes show an intense NIR fluorescence beyond 1000 nm, while yellow monomeric PtL 2 complexes are not emissive at all. The room temperature excitation spectra of 1D polymeric [PtL 2 ] n complexes demonstrated their strong emission beyond 1000 nm regardless of the used excitation wavelength between 350 and 800 nm, which is typical of systems with delocalized charge carriers. For the first time the formation of mixed valence “metal wires” held together by metallophilic interactions is directly linked both with an intense fluorescence in the NIR region of the spectrum and with the electrical conductivity. The effect of the concentration of [PtL 2 ] n complexes dispersed in the dielectric salt matrix on the photoluminescence wavelength and intensity was investigated. Both polymers show a quantum yield that is remarkably high for this region of the spectrum, reaching ∼2%. Variable temperature emission of polymeric [PtL 2 ] n in the −190–+60 °C range was studied as well. 
    more » « less