Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While the detrimental health effects of prolonged ultraviolet (UV) irradiation on skin health have been widely accepted, the biomechanical process by which photoaging occurs and the relative effects of irradiation with different UV ranges on skin biomechanics have remained relatively unexplored. In this study, the effects of UV-induced photoageing are explored by quantifying the changes in the mechanical properties of full-thickness human skin irradiated with UVA and UVB light for incident dosages up to 1600 J/cm2. Mechanical testing of skin samples excised parallel and perpendicular to the predominant collagen fiber orientation show a rise in the fractional relative difference of elastic modulus, fracture stress, and toughness with increased UV irradiation. These changes become significant with UVA incident dosages of 1200 J/cm^2 for samples excised both parallel and perpendicular to the dominant collagen fiber orientation. However, while mechanical changes occur in samples aligned with the collagen orientation at UVB dosages of 1200 J/cm^2, statistical differences in samples perpendicular to the collagen orientation emerge only for UVB dosages of 1600 J/cm^2. No notable or consistent trend is observed for the fracture strain. Analyses of toughness changes with maximum absorbed dosage reveals that no one UV range is more impactful in inducing mechanical property changes, but rather these changes scale with maximum absorbed energy. Evaluation of the structural characteristics of collagen further reveals an increase in collagen fiber bundle density with UV irradiation, but not collagen tortuosity, potentially linking mechanical changes to altered microstructure.more » « less
-
Abstract The ongoing COVID-19 global pandemic has necessitated evaluating various disinfection technologies for reducing viral transmission in public settings. Ultraviolet (UV) radiation can inactivate pathogens and viruses but more insight is needed into the performance of different UV wavelengths and their applications. We observed greater than a 3-log reduction of SARS-CoV-2 infectivity with a dose of 12.5 mJ/cm 2 of 254 nm UV light when the viruses were suspended in PBS, while a dose of 25 mJ/cm 2 was necessary to achieve a similar reduction when they were in an EMEM culture medium containing 2%(v/v) FBS, highlighting the critical effect of media in which the virus is suspended, given that SARS-CoV-2 is always aerosolized when airborne or deposited on a surface. It was found that SARS-CoV-2 susceptibility (a measure of the effectiveness of the UV light) in a buffer such as PBS was 4.4-fold greater than that in a cell culture medium. Furthermore, we discovered the attenuation of UVC disinfection by amino acids, vitamins, and niacinamide, highlighting the importance of determining UVC dosages under a condition close to aerosols that wrap the viruses. We developed a disinfection model to determine the effect of the environment on UVC effectiveness with three different wavelengths, 222 nm, 254 nm, and 265 nm. An inverse correlation between the liquid absorbance and the viral susceptibility was observed. We found that 222 nm light was most effective at reducing viral infectivity in low absorbing liquids such as PBS, whereas 265 nm light was most effective in high absorbing liquids such as cell culture medium. Viral susceptibility was further decreased in N95 masks with 222 nm light being the most effective. The safety of 222 nm was also studied. We detected changes to the mechanical properties of the stratum corneum of human skins when the 222 nm accumulative exposure exceeded 50 J/cm 2 .The findings highlight the need to evaluate each UV for a given application, as well as limiting the dose to the lowest dose necessary to avoid unnecessary exposure to the public.more » « less
-
Claesen, Jan (Ed.)ABSTRACT Atopic dermatitis (AD) is associated with a deficiency of skin lipids, increased populations of Staphylococcus aureus in the microbiome, and structural defects in the stratum corneum (SC), the outermost layer of human skin. However, the pathogenesis of AD is ambiguous, as it is unclear whether observed changes are the result of AD or contribute to the pathogenesis of the disease. Previous studies have shown that S. aureus is capable of permeating across isolated human SC tissue when lipids are depleted to levels consistent with AD conditions. In this study, we expand upon this discovery to determine the mechanisms and implications of bacterial penetration into the SC barrier. Specifically, we establish if bacteria are permeating intercellularly or employing a combination of both inter- and intracellular travel. The mechanical implications of bacterial invasion, lipid depletion, and media immersion are also evaluated using a newly developed, physiologically relevant, temperature-controlled drip chamber. Results reveal for the first time that S. aureus can be internalized by corneocytes, indicating transcellular movement through the tissue during permeation, consistent with previous theoretical models. S. aureus also degrades the mechanical integrity of human SC, particularly when the tissue is partially depleted of lipids. These observed mechanical changes are likely the cause of broken or ruptured tissue seen as exudative lesions in AD flares. This work further highlights the necessity of lipids in skin microbial barrier function. IMPORTANCE Millions of people suffer from the chronic inflammatory skin disease atopic dermatitis (AD), whose symptoms are associated with a deficiency of skin lipids that exhibit antimicrobial functions and increased populations of the opportunistic pathogen Staphylococcus aureus . However, the pathogenesis of AD is ambiguous, and it remains unclear if these observed changes are merely the result of AD or contribute to the pathogenesis of the disease. In this article, we demonstrate the necessity of skin lipids in preventing S. aureus from penetrating the outermost barrier of human skin, thereby causing a degradation in tissue integrity. This bacterial permeation into the viable epidermis could act as an inflammatory trigger of the disease. When coupled with delipidated AD tissue conditions, bacterial permeation can also explain increased tissue fragility, potentially causing lesion formation in AD patients that results in further enhancing bacterial permeability across the stratum corneum and the development of chronic conditions.more » « less
-
Most protective biological tissues are structurally comprised of a stiff and thin outer layer on top of a soft underlying substrate. Examples include mammalian skin, fish scales, crustacean shells, and nut and seed shells. While these composite skin-like tissues are ubiquitous in nature, their mechanics of failure and what potential mechanical advantages their composite structures offer remains unclear. In this work, changes in the puncture mechanics of composite hyperelastic elastomers with differing non-dimensional layer thicknesses are explored. Puncture behavior of these membranes is measured for dull and sharp conical indenters. Membranes with a stiff outer layer of only 1% of the overall composite thickness exhibit a puncture energy comparable to membranes with a stiff outer layer approximately 20 times thicker. This puncture energy, scaled by its flexural capacity, achieves a local maximum when the top layer is approximately 1% of the total membrane, similar to the structure of numerous mammalian species. The mode of failure for these regimes is also investigated. In contrast with puncture directly beneath sharp tips caused by high stress concentrations, a new type of ‘coring’ type fracture emerges at large indentation depths, resulting from accumulated tensile strain energy along the sides of the divot as the membrane is deformed with a blunt indenter. These results could enhance the durability and robustness of stretchable materials used for products such as surgical gloves, packaging, and flexible electronics.more » « less
-
Atopic dermatitis (AD) is a chronic inflammatory disease that affects approximately 2-5% of adults worldwide. The pathogenesis of AD continues to be a well-debated point of conjecture, with numerous hypotheses having been proposed. AD conditions are associated with increased populations of Staphylococcus aureus and reduced skin lipids. In this study, we evaluate the ability of S. aureus to permeate across human stratum corneum (SC) exhibiting both normal and depleted lipid conditions consistent with AD. This permeation would enable bacteria to interact with underlying viable epidermal cells, which could serve as a trigger for inflammation and disease onset. Our results indicate that permeation of S. aureus through SC exhibiting normal lipid conditions is not statistically significant. However, bacteria can readily permeate through lipid depleted tissue over a 9-d period. These findings suggest that S. aureus may potentially act as the mechanistic cause, rather than merely the result of AD.more » « less