skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Gernat, Tim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Gut microbiomes are increasingly recognized for mediating diverse biological aspects of their hosts, including complex behavioral phenotypes. Although many studies have reported that experimental disruptions to the gut microbial community result in atypical host behavior, studies that address how gut microbes contribute to adaptive behavioral trait variation are rare. Eusocial insects represent a powerful model to test this, because of their simple gut microbiota and complex division of labor characterized by colony-level variation in behavioral phenotypes. Although previous studies report correlational differences in gut microbial community associated with division of labor, here, we provide evidence that gut microbes play a causal role in defining differences in foraging behavior between European honey bees (Apis mellifera). We found that gut microbial community structure differed between hive-based nurse bees and bees that leave the hive to forage for floral resources. These differences were associated with variation in the abundance of individual microbes, including Bifidobacterium asteroides, Bombilactobacillus mellis, and Lactobacillus melliventris. Manipulations of colony demography and individual foraging experience suggested that differences in gut microbial community composition were associated with task experience. Moreover, single-microbe inoculations with B. asteroides, B. mellis, and L. melliventris caused effects on foraging intensity. These results demonstrate that gut microbes contribute to division of labor in a social insect, and support a role of gut microbes in modulating host behavioral trait variation.

    more » « less
    Free, publicly-accessible full text available February 27, 2025