skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gerson, Alexander R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Technological advancements now enable the use of flow-through respirometry for rapid, high-throughput metabolic phenotyping, though live-in systems currently do not exist for birds. We designed live-in respirometry chambers for small birds with an Arduino-based electronic system to continuously monitor bird body weight, food intake, and water intake in sync with metabolic data collection. To demonstrate how this system can be implemented, we kept birds in the metabolic phenotypic chambers for 10 days while we progressively lowered the temperature from 25 °C to 5 °C. We used the data to calculate hourly energy expenditure and food/water intake during acute cold acclimation. We provide all plans and code for the live-in chambers, Arduino biomonitoring system, and additional RFID module as a low-cost, DIY alternative to commercially available systems and to enable the use of standard respirometry equipment for metabolic phenotyping in birds. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  2. Many bird species commonly aggregate in flocks for reasons ranging from predator defense to navigation. Available evidence suggests that certain types of flocks—the V and echelon formations of large birds—may provide a benefit that reduces the aerodynamic cost of flight, whereas cluster flocks typical of smaller birds may increase flight costs. However, metabolic flight costs have not been directly measured in any of these group flight contexts [Zhang and Lauder,J. Exp. Biol.226, jeb245617 (2023)]. Here, we measured the energetic benefits of flight in small groups of two or three birds and the requirements for realizing those benefits, using metabolic energy expenditure and flight position measurements from European Starlings flying in a wind tunnel. The starlings continuously varied their relative position during flights but adopted a V formation motif on average, with a modal spanwise and streamwise spacing of [0.81, 0.91] wingspans. As measured via CO2production, flight costs for follower birds were significantly reduced compared to their individual solo flight benchmarks. However, followers with more positional variability with respect to leaders did less well, even increasing their costs above solo flight. Thus, we directly demonstrate energetic costs and benefits for group flight followers in an experimental context amenable to further investigation of the underlying aerodynamics, wake interactions, and bird characteristics that produce these metabolic effects. 
    more » « less
    Free, publicly-accessible full text available June 25, 2025
  3. Understanding physiological traits and ecological conditions that influence a species reliance on metabolic water is critical to creating accurate physiological models that can assess their ability to adapt to environmental perturbations (e.g., drought) that impact water availability. However, relatively few studies have examined variation in the sources of water animals use to maintain water balance, and even fewer have focused on the role of metabolic water. A key reason is methodological limitations. Here, we applied a new method that measures the triple oxygen isotopic composition of a single blood sample to estimate the contribution of metabolic water to the body water pool of three passerine species. This approach relies on Δ' 17 O, defined as the residual from the tight linear correlation that naturally exists between δ 17 O and δ 18 O values. Importantly, Δ'17O is relatively insensitive to key fractionation processes, such as Rayleigh distillation in the water cycle that have hindered previous isotope-based assessments of animal water balance. We evaluated the effects of changes in metabolic rate and water intake on Δ' 17 O values of captive rufous-collared sparrows ( Zonotrichia capensis ) and two invertivorous passerine species in the genus Cinclodes from the field. As predicted, colder acclimation temperatures induced increases in metabolic rate, decreases in water intake, and increases in the contribution of metabolic water to the body water pool of Z. capensis , causing a consistent change in Δ' 17 O. Measurement of Δ' 17 O also provides an estimate of the δ 18 O composition of ingested pre-formed (drinking/food) water. Estimated δ 18 O values of drinking/food water for captive Z. capensis were ~ −11‰, which is consistent with that of tap water in Santiago, Chile. In contrast, δ 18 O values of drinking/food water ingested by wild-caught Cinclodes were similar to that of seawater, which is consistent with their reliance on marine resources. Our results confirm the utility of this method for quantifying the relative contribution of metabolic versus pre-formed drinking/food water to the body water pool in birds. 
    more » « less
  4. null (Ed.)
    ABSTRACT Migratory birds catabolize large quantities of protein during long flights, resulting in dramatic reductions in organ and muscle mass. One of the many hypotheses to explain this phenomenon is that decrease in lean mass is associated with reduced resting metabolism, saving energy after flight during refueling. However, the relationship between lean body mass and resting metabolic rate remains unclear. Furthermore, the coupling of lean mass with resting metabolic rate and with peak metabolic rate before and after long-duration flight have not previously been explored. We flew migratory yellow-rumped warblers ( Setophaga coronata ) in a wind tunnel under one of two humidity regimes to manipulate the rate of lean mass loss in flight, decoupling flight duration from total lean mass loss. Before and after long-duration flights, we measured resting and peak metabolism, and also measured fat mass and lean body mass using quantitative magnetic resonance. Flight duration ranged from 28 min to 600 min, and birds flying under dehydrating conditions lost more fat-free mass than those flying under humid conditions. After flight, there was a 14% reduction in resting metabolism but no change in peak metabolism. Interestingly, the reduction in resting metabolism was unrelated to flight duration or to change in fat-free body mass, indicating that protein metabolism in flight is unlikely to have evolved as an energy-saving measure to aid stopover refueling, but metabolic reduction itself is likely to be beneficial to migratory birds arriving in novel habitats. 
    more » « less