skip to main content


Search for: All records

Creators/Authors contains: "Gerstner, Beth E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dainton, John (Ed.)

    Improving models of species' distributions is essential for conservation, especially in light of global change. Species distribution models (SDMs) often rely on mean environmental conditions, yet species distributions are also a function of environmental heterogeneity and filtering acting at multiple spatial scales. Geodiversity, which we define as the variation of abiotic features and processes of Earth's entire geosphere (inclusive of climate), has potential to improve SDMs and conservation assessments, as they capture multiple abiotic dimensions of species niches, however they have not been sufficiently tested in SDMs. We tested a range of geodiversity variables computed at varying scales using climate and elevation data. We compared predictive performance of MaxEnt SDMs generated using CHELSA bioclimatic variables to those also including geodiversity variables for 31 mammalian species in Colombia. Results show the spatial grain of geodiversity variables affects SDM performance. Some variables consistently exhibited an increasing or decreasing trend in variable importance with spatial grain, showing slight scale-dependence and indicating that some geodiversity variables are more relevant at particular scales for some species. Incorporating geodiversity variables into SDMs, and doing so at the appropriate spatial scales, enhances the ability to model species-environment relationships, thereby contributing to the conservation and management of biodiversity.

    This article is part of the Theo Murphy meeting issue ‘Geodiversity for science and society’.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. null (Ed.)
    Predictions from species distribution models (SDMs) are commonly used in support of environmental decision-making to explore potential impacts of climate change on biodiversity. However, because future climates are likely to differ from current climates, there has been ongoing interest in understanding the ability of SDMs to predict species responses under novel conditions (i.e., model transferability). Here, we explore the spatial and environmental limits to extrapolation in SDMs using forest inventory data from 11 model algorithms for 108 tree species across the western United States. Algorithms performed well in predicting occurrence for plots that occurred in the same geographic region in which they were fitted. However, a substantial portion of models performed worse than random when predicting for geographic regions in which algorithms were not fitted. Our results suggest that for transfers in geographic space, no specific algorithm was better than another as there were no significant differences in predictive performance across algorithms. There were significant differences in predictive performance for algorithms transferred in environmental space with GAM performing best. However, the predictive performance of GAM declined steeply with increasing extrapolation in environmental space relative to other algorithms. The results of this study suggest that SDMs may be limited in their ability to predict species ranges beyond the environmental data used for model fitting. When predicting climate-driven range shifts, extrapolation may also not reflect important biotic and abiotic drivers of species ranges, and thus further misrepresent the realized shift in range. Future studies investigating transferability of process based SDMs or relationships between geodiversity and biodiversity may hold promise. 
    more » « less
  3. Abstract Motivation

    Biodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life‐history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross‐taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open‐access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait‐based studies of species in this ecologically important region.

    Main Types of Variable Contained

    Ecological, life‐history, morphological and geographical traits.

    Spatial Location and Grain

    Neotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions.

    Time Period and Grain

    IUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023.

    Major Taxa and Level of Measurement

    Classes Mammalia and Aves; 40,074 species‐level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub‐species (mammals).

    Software Format

    .csv; R.

     
    more » « less
  4. Abstract

    Conservation planning and decision‐making rely on evaluations of biodiversity status and threats that are based upon species' distribution estimates. However, gaps exist regarding automated tools to delineate species' current ranges from distribution estimates and use those estimates to calculate both species‐ and community‐level biodiversity metrics. Here, we introduce changeRangeR, an R package that facilitates workflows to reproducibly transform estimates of species' distributions into metrics relevant for conservation. For example, by combining predictions from species distribution models (SDMs) with other maps of environmental data (e.g., suitable forest cover), researchers can characterize the proportion of a species' range that is under protection, metrics used under the IUCN Criteria A and B guidelines (Area of Occupancy and Extent of Occurrence), and other more general metrics such as taxonomic and phylogenetic diversity and endemism. Further, changeRangeR facilitates temporal comparisons among biodiversity metrics to inform efforts toward complementarity and consideration of future scenarios in conservation decisions. changeRangeR also provides tools to determine the effects of modeling decisions through sensitivity tests. Transparent and repeatable workflows for calculating biodiversity change metrics from SDMs such as those provided by changeRangeR are essential to inform conservation decision‐making efforts and represent key extensions for SDM methodology and associated metadata documentation.

     
    more » « less
  5. Abstract

    There is an urgent need for more ecologically realistic models for better predicting the effects of climate change on species’ potential geographic distributions. Here we build ecological niche models usingMAXENTand test whether selecting predictor variables based on biological knowledge and selecting ecologically realistic response curves can improve cross‐time distributional predictions. We also evaluate how the method chosen for extrapolation into nonanalog conditions affects the prediction. We do so by estimating the potential distribution of a montane shrew (Mammalia, Soricidae,Cryptotis mexicanus) at present and the Last Glacial Maximum (LGM). Because it is tightly associated with cloud forests (with climatically determined upper and lower limits) whose distributional shifts are well characterized, this species provides clear expectations of plausible vs. implausible results. Response curves for theMAXENTmodel made using variables selected via biological justification were ecologically more realistic compared with those of the model made using many potential predictors. This strategy also led to much more plausible geographic predictions for upper and lower elevational limits of the species both for the present and during theLGM. By inspecting the modeled response curves, we also determined the most appropriate way to extrapolate into nonanalog environments, a previously overlooked factor in studies involving model transfer. This study provides intuitive context for recommendations that should promote more realistic ecological niche models for transfer across space and time.

     
    more » « less