skip to main content

Search for: All records

Creators/Authors contains: "Gettelman, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate models struggle to accurately represent the highly reflective boundary layer clouds overlying the remote and stormy Southern Ocean. We use in situ aircraft observations from the Southern Ocean Clouds, Radiation and Aerosol Transport Experimental Study (SOCRATES) to evaluate Southern Ocean clouds in a cloud‐resolving large‐eddy simulation (LES) and two coarse resolution global atmospheric models, the CESM Community Atmosphere Model (CAM6) and the GFDL Atmosphere Model (AM4), run in a nudged hindcast framework. We develop six case studies from SOCRATES data which span the range of observed cloud and boundary layer properties. For each case, the LES is run once forced purely using reanalysis data (fifth generation European Centre for Medium‐Range Weather Forecasts atmospheric reanalysis, “ERA5 based”) and once strongly nudged to an aircraft profile(“Obs based”). The ERA5‐based LES can be compared with the global models, which are also nudged to reanalysis data and are better for simulating cumulus. The Obs‐based LES closely matches an observed cloud profile and is useful for microphysical comparisons and sensitivity tests and simulating multilayer stratiform clouds. We use two‐moment Morrison microphysics in the LES and find that it simulates too few frozen particles in clouds occurring within the Hallett‐Mossop temperature range. We tweakmore »the Hallett‐Mossop parameterization so that it activates within boundary layer clouds, and we achieve better agreement between observed and simulated microphysics. The nudged global climate models (GCMs) simulate liquid‐dominated mixed‐phase clouds in the stratiform cases but excessively glaciate cumulus clouds. Both GCMs struggle to represent two‐layer clouds, and CAM6 has low droplet concentrations in all cases and underpredicts stratiform cloud‐driven turbulence.

    « less
  2. Abstract

    While most observations indicate well‐buffered clouds to aerosol perturbations, global models do not. Among the suggested mechanisms for this discrepancy is the models' lack of connections between cloud droplet size and two processes that can contribute to reduced cloudiness when droplets become more numerous and smaller: evaporation and entrainment. In this study, we explore different implementations of size‐dependent evaporation and entrainment in the global atmospheric model CAM5.3‐Oslo. We study their impact on the preindustrial‐to‐present day change in liquid water path () and the corresponding aerosol indirect effect (). Impacts of the 2014–2015 fissure eruption in Holuhraun, Iceland, are also presented. Our entrainment modifications only have a moderate effect on(changes from1.07 W mto0.98 W m), and a small impact on the signal from the Holuhraun eruption compared to other suggested compensating mechanisms. Simulations with added size‐dependent evaporation in the top of the stratiform clouds also show small evaporation differences between PI and PD. Moderate changes inwere achieved when also including an entrainment feedback to the evaporation changes, mixing air between the cloudtop layer and the layer above. These changes were not associated with the size dependency,more »but changes in the cloud susceptibility to aerosols in both PI and PD when adding evaporation. We find that increased evaporation of smaller droplets at stratiform cloud tops can reduce, but can increasein some areas due to enhanced shallow convection caused by destabilization.

    « less
  3. Abstract

    Southern Ocean (S. Ocean) clouds are important for climate prediction. Yet previous global climate models failed to accurately represent cloud phase distributions in this observation‐sparse region. In this study, data from the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study (SOCRATES) experiment is compared to constrained simulations from a global climate model (the Community Atmosphere Model, CAM). Nudged versions of CAM are found to reproduce many of the features of detailed in situ observations, such as cloud location, cloud phase, and boundary layer structure. The simulation in CAM6 has improved its representation of S. Ocean clouds with adjustments to the ice nucleation and cloud microphysics schemes that permit more supercooled liquid. Comparisons between modeled and observed hydrometeor size distributions suggest that the modeled hydrometeor size distributions represent the dual peaked shape and form of observed distributions, which is remarkable given the scale difference between model and observations. Comparison to satellite observations of cloud physics is difficult due to model assumptions that do not match retrieval assumptions. Some biases in the model's representation of S. Ocean clouds and aerosols remain, but the detailed cloud physical parameterization provides a basis for process level improvement and direct comparisons to observations. This ismore »crucial because cloud feedbacks and climate sensitivity are sensitive to the representation of S. Ocean clouds.

    « less
  4. Abstract

    We examine the response of the Community Earth System Model Versions 1 and 2 (CESM1 and CESM2) to abrupt quadrupling of atmospheric CO2concentrations (4xCO2) and to 1% annually increasing CO2concentrations (1%CO2). Different estimates of equilibrium climate sensitivity (ECS) for CESM1 and CESM2 are presented. All estimates show that the sensitivity of CESM2 has increased by 1.5 K or more over that of CESM1. At the same time the transient climate response (TCR) of CESM1 and CESM2 derived from 1%CO2 experiments has not changed significantly—2.1 K in CESM1 and 2.0 K in CESM2. Increased initial forcing as well as stronger shortwave radiation feedbacks are responsible for the increase in ECS seen in CESM2. A decomposition of regional radiation feedbacks and their contribution to global feedbacks shows that the Southern Ocean plays a key role in the overall behavior of 4xCO2 experiments, accounting for about 50% of the total shortwave feedback in both CESM1 and CESM2. The Southern Ocean is also responsible for around half of the increase in shortwave feedback between CESM1 and CESM2, with a comparable contribution arising over tropical ocean. Experiments using a thermodynamic slab‐ocean model (SOM) yield estimates of ECS that are in remarkable agreement with those from fully coupledmore »Earth system model (ESM) experiments for the same level of CO2increase. Finally, we show that the similarity of TCR in CESM1 and CESM2 masks significant regional differences in warming that occur in the 1%CO2 experiments for each model.

    « less
  5. Abstract

    The Single Column Atmosphere Model (SCAM) is a single column model version of the Community Atmosphere Model (CAM). Here we describe the functionality and features of SCAM6, available as part of CAM6 in the Community Earth System Model, version 2 (CESM2). SCAM6 features a wide selection of standard cases, as well as the ability to easily configure a case specified by the user based on a particular point in a CAM 3‐D simulation. This work illustrates how SCAM6 reproduces CAM6 results for physical parameterizations, mostly of moisture and clouds. We demonstrate how SCAM6 can be used for model development through different physics selections, as well as with parameter sweep experiments to highlight the sensitivity of cloud properties to the specification of the vapor deposition process in the cloud microphysics. Furthermore, we use SCAM6 to illustrate the sensitivity of CAM6 cloud radiative properties and precipitation to variable drop number (cloud microphysics properties). Finally, we illustrate how SCAM6 can be used to explore critical emergent processes such as cloud feedbacks and show that CAM6 cloud responses to surface warming in stratus and stratocumulus regimes are similar to those in CAM5. CAM6 has a larger response in the shallow cumulus regime thanmore »CAM5. CAM6 cloud feedbacks in the shallow cumulus regime are sensitive to turbulence parameters. SCAM6 is thus a valuable tool for model development, evaluation, and scientific analy sis and an important part of the model hierarchy in Community Earth System Model, version 2.

    « less
  6. Abstract

    The Community Earth System Model Version 2 (CESM2) has an equilibrium climate sensitivity (ECS) of 5.3 K. ECS is an emergent property of both climate feedbacks and aerosol forcing. The increase in ECS over the previous version (CESM1) is the result of cloud feedbacks. Interim versions of CESM2 had a land model that damped ECS. Part of the ECS change results from evolving the model configuration to reproduce the long‐term trend of global and regional surface temperature over the twentieth century in response to climate forcings. Changes made to reduce sensitivity to aerosols also impacted cloud feedbacks, which significantly influence ECS. CESM2 simulations compare very well to observations of present climate. It is critical to understand whether the high ECS, outside the best estimate range of 1.5–4.5 K, is plausible.

  7. Abstract

    Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol‐radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol‐driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed‐phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of ‐1.6 to ‐0.6 W m−2, or ‐2.0 to ‐0.4 W m−2with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negativemore »values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial‐era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds.

    « less
  8. Abstract

    An overview of the Community Earth System Model Version 2 (CESM2) is provided, including a discussion of the challenges encountered during its development and how they were addressed. In addition, an evaluation of a pair of CESM2 long preindustrial control and historical ensemble simulations is presented. These simulations were performed using the nominal 1° horizontal resolution configuration of the coupled model with both the “low‐top” (40 km, with limited chemistry) and “high‐top” (130 km, with comprehensive chemistry) versions of the atmospheric component. CESM2 contains many substantial science and infrastructure improvements and new capabilities since its previous major release, CESM1, resulting in improved historical simulations in comparison to CESM1 and available observations. These include major reductions in low‐latitude precipitation and shortwave cloud forcing biases; better representation of the Madden‐Julian Oscillation; better El Niño‐Southern Oscillation‐related teleconnections; and a global land carbon accumulation trend that agrees well with observationally based estimates. Most tropospheric and surface features of the low‐ and high‐top simulations are very similar to each other, so these improvements are present in both configurations. CESM2 has an equilibrium climate sensitivity of 5.1–5.3 °C, larger than in CESM1, primarily due to a combination of relatively small changes to cloud microphysics andmore »boundary layer parameters. In contrast, CESM2's transient climate response of 1.9–2.0 °C is comparable to that of CESM1. The model outputs from these and many other simulations are available to the research community, and they represent CESM2's contributions to the Coupled Model Intercomparison Project Phase 6.

    « less