skip to main content


Search for: All records

Creators/Authors contains: "Ghanbari, Mahshid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Coastal urban areas like New York City (NYC) are more vulnerable to urban pluvial flooding particularly because the rapid runoff from extreme rainfall events can be further compounded by the co-occurrence of high sea-level conditions either from tide or storm surge leading to compound flooding events. Present-day urban pluvial flooding is a significant challenge for NYC and this challenge is expected to become more severe with the greater frequency and intensity of storms and sea-level rise (SLR) in the future. In this study, we advance NYC’s assessment of present and future exposure to urban pluvial flooding through simulating various storm scenarios using a citywide hydrologic and hydraulic model. This is the first citywide analysis using NYC’s drainage models focusing on rainfall-induced flooding. We showed that the city’s stormwater system is highly vulnerable to high-intensity short-duration “cloudburst” events, with the extent and volume of flooding being the largest during these events. We further showed that rainfall events coupled with higher sea-level conditions, either from SLR or storm surge, could significantly increase the volume and extent of flooding in the city. We also assessed flood exposure in terms of the number of buildings and length of roads exposed to flooding as well as the number of the affected population. This study informs NYC’s residents of their current and future flood risk and enables the development of tailored solutions to manage increasing flood risk in the city.

     
    more » « less
  2. Abstract

    Compound dry-hot extreme (CDHE) events pose greater risks to the environment, society, and human health than their univariate counterparts. Here, we project decadal-length changes in the frequency and duration of CDHE events for major U.S. cities during the 21st century. Using the Weather Research and Forecasting (WRF) model coupled to an urban canopy parameterization, we find a considerable increase in the frequency and duration of future CDHE events across all U.S. major cities under the compound effect of high-intensity GHG- and urban development-induced warming. Our results indicate that while GHG-induced warming is the primary driver of the increased frequency and duration of CDHE events, urban development amplifies this effect and should not be neglected. Furthermore, We show that the highest frequency amplification of major CDHE events is expected for U.S. cities across the Great Plains South, Southwest, and the southern part of the Northwest National Climate Assessment regions.

     
    more » « less
  3. Abstract

    The cooccurrence of coastal and riverine flooding leads to compound events with substantial impacts on people and property in low‐lying coastal areas. Climate change could increase the level of compound flood hazard through higher extreme sea levels and river flows. Here, a bivariate flood hazard assessment method is proposed to estimate compound coastal‐riverine frequency under current and future climate conditions. A copula‐based approach is used to estimate the joint return period (JRP) of compound floods by incorporating sea‐level rise (SLR) and changes in peak river flows into the marginal distributions of flood drivers. Specifically, the changes in JRP of compound major coastal‐riverine flooding defined based on simultaneous exceedances above major coastal and riverine thresholds, are explored by midcentury. Subsequently, the increase in the probability of occurrence of at least one compound major coastal‐riverine flooding for a given period of time is quantified. The proposed compound flood hazard assessment is conducted at 26 paired tidal‐riverine stations along the Contiguous United States coast with long‐term data and defined flood thresholds. We show that the northeast Atlantic and the western part of the Gulf coasts are experiencing the highest compound major coastal‐riverine flood probability under current conditions. However, future SLR scenarios show the highest frequency amplification along the southeast Atlantic coast. The impact of changes in peak river flows is found to be considerably less than that of SLR. Climate change impacts, especially SLR, may lead to more frequent compound events, which cannot be ignored for future adaptation responses in estuary regions.

     
    more » « less
  4. Abstract

    Flood exposure is increasing in coastal communities due to rising sea levels. Understanding the effects of sea level rise (SLR) on frequency and consequences of coastal flooding and subsequent social and economic impacts is of utmost importance for policymakers to implement effective adaptation strategies. Effective strategies may consider impacts from cumulative losses from minor flooding as well as acute losses from major events. In the present study, a statistically coherent Mixture Normal‐Generalized Pareto Distribution model was developed, which reconciles the probabilistic characteristics of the upper tail as well as the bulk of the sea level data. The nonstationary sea level condition was incorporated in the mixture model using Quantile Regression method to characterize variable Generalized Pareto Distribution thresholds as a function of SLR. The performance validity of the mixture model was corroborated for 68 tidal stations along the Contiguous United States (CONUS) coast with long‐term observed data. The method was subsequently employed to assess existing and future coastal minor and major flood frequencies. The results indicate that the frequency of minor and major flooding will increase along all CONUS coastal regions in response to SLR. By the end of the century, under the “Intermediate” SLR scenario, major flooding is anticipated to occur with return period less than a year throughout the coastal CONUS. However, these changes vary geographically and temporally. The mixture model was reconciled with the property exposure curve to characterize how SLR might influence Average Annual Exposure to coastal flooding in 20 major CONUS coastal cities.

     
    more » « less