Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we address the challenges of asynchronous gradient descent in distributed learning environments, particularly focusing on addressing the challenges of stale gradients and the need for extensive communication resources. We develop a novel communication efficient framework that incorporates a gradient evaluation algorithm to assess and utilize delayed gradients based on their quality, ensuring efficient and effective model updates while significantly reducing communication overhead. Our proposed algorithm requires agents to only send the norm of the gradients rather than the computed gradient. The server then decides whether to accept the gradient if the ratio between the norm of the gradient and the distance between the global model parameter and the local model parameter exceeds a certain threshold. With the proper choice of the threshold, we show that the convergence rate achieves the same order as the synchronous stochastic gradient without depending on the staleness value unlike most of the existing works. Given the computational complexity of the initial algorithm, we introduce a simplified variant that prioritizes the practical applicability without compromising on the convergence rates. Our simulations demonstrate that our proposed algorithms outperform existing state-of-the-art methods, offering improved convergence rates, stability, accuracy, and resource consumption.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Free, publicly-accessible full text available May 21, 2026
-
Abstract In this work, we develop a differentiable rendering pipeline for visualising plasma emission within tokamaks, and estimating the gradients of the emission and estimating other physical quantities. Unlike prior work, we are able to leverage arbitrary representations of plasma quantities and easily incorporate them into a non-linear optimisation framework. The efficiency of our method enables not only estimation of a physically plausible image of plasma, but also recovery of the neutral Deuterium distribution from imaging and midplane measurements alone. We demonstrate our method with three different levels of complexity showing first that a poloidal neutrals density distribution can be recovered from imaging alone, second that the distributions of neutral Deuterium, electron density and electron temperature can be recovered jointly, and finally, that this can be done in the presence of realistic imaging systems that incorporate sensor cropping and quantisation.more » « less
-
Roll, I; McNamara, D; Sosnovsky, S; Luckin, R; Dimitrova, V. (Ed.)Knowledge tracing refers to a family of methods that estimate each student’s knowledge component/skill mastery level from their past responses to questions. One key limitation of most existing knowledge tracing methods is that they can only estimate an overall knowledge level of a student per knowledge component/skill since they analyze only the (usually binary-valued) correctness of student responses. Therefore, it is hard to use them to diagnose specific student errors. In this paper, we extend existing knowledge tracing methods beyond correctness prediction to the task of predicting the exact option students select in multiple choice questions. We quantitatively evaluate the performance of our option tracing methods on two large-scale student response datasets. We also qualitatively evaluate their ability in identifying common student errors in the form of clusters of incorrect options across different questions that correspond to the same error.more » « less
An official website of the United States government

Full Text Available