skip to main content

Search for: All records

Creators/Authors contains: "Ghosh, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Camps-Valls, G ; Ruiz, F. J. ; Valera, I. (Ed.)
    Free, publicly-accessible full text available January 1, 2023
  3. Abstract Annihilation studies have established that positrons bind to most molecules. They also provide measurements of the positron-molecule binding energies, which are found to vary widely and depend upon molecular size and composition. Trends of binding energy with global parameters such as molecular polarizability and dipole moment have been discussed previously. In this paper, the dependence of binding energy on molecular geometry is investigated by studying resonant positron annihilation on selected pairs of isomers. It is found that molecular geometry can play a significant role in determining the binding energies even for isomers with very similar polarizabilities and dipole moments.more »The possible origins of this dependence are discussed.« less
    Free, publicly-accessible full text available November 17, 2022
  4. Free, publicly-accessible full text available July 1, 2022
  5. ABSTRACT Star-forming galaxies are rich reservoirs of dust, both warm and cold. But the cold dust emission is faint alongside the relatively bright and ubiquitous warm dust emission. Recently, evidence for a very cold dust (VCD) component has also been revealed via millimetre/submillimetre (mm/sub-mm) photometry of some galaxies. This component, despite being the most massive of the three dust components in star-forming galaxies, is by virtue of its very low temperature, faint and hard to detect together with the relatively bright emission from warmer dust. Here, we analyse the dust content of a carefully selected sample of four galaxies detectedmore »by IRAS, WISE, and South Pole Telescope (SPT), whose spectral energy distributions (SEDs) were modelled to constrain their potential cold dust content. Low-frequency radio observations using the Giant Metrewave Radio Telescope (GMRT) were carried out to segregate cold dust emission from non-thermal emission in mm/sub-mm wavebands. We also carried out AstroSat/Ultraviolet Imaging Telescope (UVIT) observations for some galaxies to constrain their SED at shorter wavelengths so as to enforce energy balance for the SED modelling. We constructed their SEDs across a vast wavelength range (extending from UV to radio frequencies) by assembling global photometry from GALEX FUV + NUV, UVIT, Johnson BRI, 2MASS, WISE, IRAC, IRAS, AKARI, ISO PHOT, Planck HFI, SPT, and GMRT. The SEDs were modelled with cigale to estimate their basic properties, in particular to constrain the masses of their total and VCD components. Although the galaxies’ dust masses are dominated by warmer dust, there are hints of VCD in two of the targets, NGC 7496 and NGC 7590.« less
  6. Polymer composite films containing fillers comprising quasi-1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to ≈106. The polymer composites with low loadings of quasi-1D TaSe3 fillers (<3 vol%) reveal excellent electromagnetic interference shielding in the X-band GHz and extremely high frequency sub-THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high-aspect-ratio electrically conductive TaSe3 atomic-threadmore »bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high-frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating.« less
  7. All branches of ecology study relationships among and between environmental and biological variables. However, standard approaches to studying such relationships, based on correlation and regression, provide only some of the complex information contained in the relationships. Other statistical approaches exist that provide a complete description of relationships between variables, based on the concept of the *copula*; they are applied in finance, neuroscience and elsewhere, but rarely in ecology. We explore the concepts that underpin copulas and the potential for those concepts to improve our understanding of ecology. We find that informative copula structure in dependencies between variables is common acrossmore »all the environmental, species-trait, phenological, population, community, and ecosystem functioning datasets we considered. Many datasets exhibited asymmetric tail associations, whereby two variables were more strongly related in their left compared to right tails, or *vice versa*. We describe mechanisms by which observed copula structure and tail associations can arise in ecological data, including a Moran-like effect whereby dependence structures are inherited from environmental variables; and asymmetric or nonlinear influences of environments on ecological variables, such as under Liebig's law of the minimum. We also describe consequences of copula structure for ecological phenomena, including impacts on extinction risk, Taylor's law, and the temporal stability of ecosystem services. By documenting the importance of a complete description of dependence between variables, advancing conceptual frameworks, and demonstrating a powerful approach, we encourage widespread use of copulas in ecology, which we believe can benefit the discipline.« less