skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ghosh, Tonmoy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A resilient positioning, navigation, and timing (PNT) system is a necessity for the robust navigation of autonomous vehicles (AVs). A global navigation satellite system (GNSS) provides satellite-based PNT services. However, a spoofer can tamper the authentic GNSS signal and could transmit wrong position information to an AV. Therefore, an AV must have the capability of real-time detection of spoofing attacks related to PNT receivers, whereby it will help the end-user (the AV in this case) to navigate safely even if the GNSS is compromised. This paper aims to develop a deep reinforcement learning (RL)-based turn-by-turn spoofing attack detection method using low-cost in-vehicle sensor data. We have utilized the Honda Research Institute Driving Dataset to create attack and non-attack datasets to develop a deep RL model and have evaluated the performance of the deep RL-based attack detection model. We find that the accuracy of the deep RL model ranges from 99.99% to 100%, and the recall value is 100%. Furthermore, the precision ranges from 93.44% to 100%, and the f1 score ranges from 96.61% to 100%. Overall, the analyses reveal that the RL model is effective in turn-by-turn spoofing attack detection. 
    more » « less