Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Under decompression, disordered solids undergo an unjamming transition where they become under-coordinated and lose their structural rigidity. The mechanical and vibrational properties of these materials have been an object of theoretical, numerical, and experimental research for decades. In the study of low-coordination solids, understanding the behavior and physical interpretation of observables that diverge near the transition is of particular importance. Several such quantities are length scales (ξ or l) that characterize the size of excitations, the decay of spatial correlations, the response to perturbations, or the effect of physical constraints in the boundary or bulk of the material. Additionally, the spatial and sample-to-sample fluctuations of macroscopic observables such as contact statistics or elastic moduli diverge approaching unjamming. Here, we discuss important connections between all of these quantities and present numerical results that characterize the scaling properties of sample-to-sample contact and shear modulus fluctuations in ensembles of low-coordination disordered sphere packings and spring networks. Overall, we highlight three distinct scaling regimes and two crossovers in the disorder quantifiers χz and χμ as functions of system size N and proximity to unjamming δz. As we discuss, χX relates to the standard deviation σX of the sample-to-sample distribution of the quantity X (e.g., excess coordination δz or shear modulus μ) for an ensemble of systems. Importantly, χμ has been linked to experimentally accessible quantities that pertain to sound attenuation and the density of vibrational states in glasses. We investigate similarities and differences in the behaviors of χz and χμ near the transition and discuss the implications of our findings on current literature, unifying findings in previous studies.more » « less
-
In amorphous solids subject to shear or thermal excitation, so-called structural indicators have been developed that predict locations of future plasticity or particle rearrangements. An open question is whether similar tools can be used in dense active materials, but a challenge is that under most circumstances, active systems do not possess well-defined solid reference configurations. We develop a computational model for a dense active crowd attracted to a point of interest, which does permit a mechanically stable reference state in the limit of infinitely persistent motion. Previous work on a similar system suggested that the collective motion of crowds could be predicted by inverting a matrix of time-averaged two-particle correlation functions. Seeking a first-principles understanding of this result, we demonstrate that this active matter system maps directly onto a granular packing in the presence of an external potential, and extend an existing structural indicator based on linear response to predict plasticity in the presence of noisy dynamics. We find that the strong pressure gradient necessitated by the directed activity, as well as a self-generated free boundary, strongly impact the linear response of the system. In low-pressure regions the linear-response-based indicator is predictive, but it does not work well in the high-pressure interior of our active packings. Our findings motivate and inform future work that could better formulate structure-dynamics predictions in systems with strong pressure gradients.more » « less
An official website of the United States government
