skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gilbert, Naomi E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The daily cycle of photosynthetic primary production at the base of marine food webs is often limited by the availability of scarce nutrients. Microbial competition for these scarce resources can be alleviated insofar as the intensity of nutrient uptake and assimilation activities are distributed heterogeneously across organisms over periodic input cycles. Recent analysis of community transcriptional dynamics in the nitrogen-limited subtropical North Pacific gyre revealed evidence of temporal partitioning of nitrogen uptake and assimilation between eukaryotic phytoplankton, cyanobacteria, and heterotrophic bacteria over day-night cycles. Here, we present results from a Lagrangian metatranscriptomic time series survey in the Sargasso Sea and demonstrate temporally partitioned phosphorus uptake in this phosphorus-limited environment. In the Sargasso, heterotrophic bacteria, eukaryotic phytoplankton, and cyanobacteria express genes for phosphorus assimilation during the morning, day, and dusk, respectively. These results support the generality of temporal niche partitioning as an emergent mechanism that can structure uptake of limiting nutrients and facilitate coexistence of diverse microbes in open ocean ecosystems. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  2. Makhalanyane, Thulani P. (Ed.)
    The biology and ecology of marine microbial eukaryotes is known to be constrained by oceanic conditions. In contrast, how viruses that infect this important group of organisms respond to environmental change is less well known, despite viruses being recognized as key microbial community members. 
    more » « less
  3. Abstract The trace metal iron (Fe) controls the diversity and activity of phytoplankton across the surface oceans, a paradigm established through decades of in situ and mesocosm experimental studies. Despite widespread Fe-limitation within high-nutrient, low chlorophyll (HNLC) waters, significant contributions of the cyanobacterium Synechococcus to the phytoplankton stock can be found. Correlations among differing strains of Synechococcus across different Fe-regimes have suggested the existence of Fe-adapted ecotypes. However, experimental evidence of high- versus low-Fe adapted strains of Synechococcus is lacking, and so we investigated the transcriptional responses of microbial communities inhabiting the HNLC, sub-Antarctic region of the Southern Ocean during the Spring of 2018. Analysis of metatranscriptomes generated from on-deck incubation experiments reflecting a gradient of Fe-availabilities reveal transcriptomic signatures indicative of co-occurring Synechococcus ecotypes adapted to differing Fe-regimes. Functional analyses comparing low-Fe and high-Fe conditions point to various Fe-acquisition mechanisms that may allow persistence of low-Fe adapted Synechococcus under Fe-limitation. Comparison of in situ surface conditions to the Fe-titrations indicate ecological relevance of these mechanisms as well as persistence of both putative ecotypes within this region. This Fe-titration approach, combined with transcriptomics, highlights the short-term responses of the in situ phytoplankton community to Fe-availability that are often overlooked by examining genomic content or bulk physiological responses alone. These findings expand our knowledge about how phytoplankton in HNLC Southern Ocean waters adapt and respond to changing Fe supply. 
    more » « less
  4. Humbert, Jean-François (Ed.)
    Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates ( Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp ( Exiguobacterium sp. JMULE1) to 5.7 Mbp ( Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis . Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai ( Taihu ) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis . 
    more » « less
  5. Abstract Nano‐ and picophytoplankton are a major component of open‐ocean ecosystems and one of the main plankton functional types in biogeochemical models, yet little is known about their trace metal contents. In cultures of the picoeukaryoteOstreococcus lucimarinus, iron limitation reduced iron quotas by 68%, a fraction of the plasticity known in diatoms. In contrast, a commonly co‐occurring cyanobacterium,Prochlorococcus, showed variable iron contents with iron availability in culture. Synchrotron X‐ray fluorescence was used to measure single‐cell metal (Mn, Fe, Co, Ni, Zn) quotas of autotrophic flagellates (1.4–16.8‐μm diameter) collected from four ocean regions. Iron quotas were tightly constrained and showed little response to iron availability, similar to culturedOstreococcus. Zinc quotas also did not vary with zinc availability but appeared to vary with phosphorus availability. These results suggest that macronutrient and metal availability may be equally important for controlling metal contents of small eukaryotic open‐ocean phytoplankton. 
    more » « less