skip to main content


Search for: All records

Creators/Authors contains: "Gill, Nathan S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 1. Amplified by warming temperatures and drought, recent outbreaks of native bark beetles (Curculionidae: Scolytinae) have caused extensive tree mortality throughout Europe and North America. Despite their ubiquitous nature and important effects on ecosystems, forest recovery following such disturbances is poorly understood, particularly across regions with varying abiotic conditions and outbreak effects. 2. To better understand post-outbreak recovery across a topographically complex region, we synthesized data from 16 field studies spanning subalpine forests in the Southern Rocky Mountains, USA. From 1997 to 2019, these forests were heavily affected by outbreaks of three native bark beetle species (Dendroctonus ponderosae, Dendroctonus rufipennis and Dryocoetes confusus). We compared pre- and post-outbreak forest conditions and developed region-wide predictive maps of post-outbreak (1) live basal areas, (2) juvenile densities and (3) height growth rates for the most abundant tree species – aspen (Populus tremuloides), Engelmann spruce (Picea engelmannii), lodgepole pine (Pinus contorta) and subalpine fir (Abies lasiocarpa). 3. Beetle-caused tree mortality reduced the average diameter of live trees by 28.4% (5.6 cm), and species dominance was altered on 27.8% of field plots with shifts away from pine and spruce. However, most plots (82.1%) were likely to recover towards pre-outbreak tree densities without additional regeneration. Region-wide maps indicated that fir and aspen, non-host species for bark beetle species with the most severe effects (i.e. Dendroctonus spp.), will benefit from outbreaks through increased compositional dominance. After accounting for individual size, height growth for all conifer species was more rapid in sites with low winter precipitation, high winter temperatures and severe outbreaks. 4. Synthesis. In subalpine forests of the US Rocky Mountains, recent bark beetle outbreaks have reduced tree size and altered species composition. While eventual recovery of the pre-outbreak forest structure is likely in most places, changes in species composition may persist for decades. Still, forest communities following bark beetle outbreaks are widely variable due to differences in pre-outbreak conditions, outbreak severity and abiotic gradients. This regional variability has critical implications for ecosystem services and susceptibility to future disturbances. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Since the late 1990s, extensive outbreaks of native bark beetles (Curculionidae: Scolytinae) have affected coniferous forests throughout Europe and North America, driving changes in carbon storage, wildlife habitat, nutrient cycling, and water resource provisioning. Remote sensing is a crucial tool for quantifying the effects of these disturbances across broad landscapes. In particular, Landsat time series (LTS) are increasingly used to characterize outbreak dynamics, including the presence and severity of bark beetle-caused tree mortality, though broad-scale LTS-based maps are rarely informed by detailed field validation. Here we used spatial and temporal information from LTS products, in combination with extensive field data and Random Forest (RF) models, to develop 30-m maps of the presence (i.e., any occurrence) and severity (i.e., cumulative percent basal area mortality) of beetle-caused tree mortality 1997–2019 in subalpine forests throughout the Southern Rocky Mountains, USA. Using resultant maps, we also quantified spatial patterns of cumulative tree mortality throughout the region, an important yet poorly understood concept in beetle-affected forests. RF models using LTS products to predict presence and severity performed well, with 80.3% correctly classified (Kappa = 0.61) and R2 = 0.68 (RMSE = 17.3), respectively. We found that ≥10,256 km2 of subalpine forest area (39.5% of the study area) was affected by bark beetles and 19.3% of the study area experienced ≥70% tree mortality over the twenty-three year period. Variograms indicated that severity was autocorrelated at scales < 250 km. Interestingly, cumulative patch-size distributions showed that areas with a near-total loss of the overstory canopy (i.e., ≥90% mortality) were relatively small (<0.24 km2) and isolated throughout the study area. Our findings help to inform an understanding of the variable effects of bark beetle outbreaks across complex forested regions and provide insight into patterns of disturbance legacies, landscape connectivity, and susceptibility to future disturbance. 
    more » « less
  4. Abstract

    Subalpine forests that historically burned every 100–300 yr are expected to burn more frequently as climate warms, perhaps before trees reach reproductive maturity or produce a serotinous seedbank. Tree regeneration after short‐interval (<30‐yr) high‐severity fire will increasingly rely on seed dispersal from unburned trees, but how dispersal varies with age and structure of surrounding forest is poorly understood. We studied wind dispersal of three conifers (Picea engelmannii,Abies lasiocarpa, andPinus contortavar.latifolia, which can be serotinous and nonserotinous) after a stand‐replacing fire that burned young (≤30 yr) and older (>100 yr)P. contortaforest in Grand Teton National Park (Wyoming, USA). We asked how propagule pressure varied with time since last fire, how seed delivery into burned forest varied with age and structure of live forest edges, what variables explained seed delivery into burned forest, and how spatial patterns of delivery across the burned area could vary with alternate patterns of surrounding live forest age. Seeds were collected in traps along 100‐m transects (n = 18) extending from live forest edges of varying age (18, 30, and >100 yr) into areas of recent (2‐yr) high‐severity fire, and along transects in live forests to measure propagule pressure. Propagule pressure was low in 18‐yr‐old stands (~8 seeds/m2) and similarly greater in 30‐ and 100‐yr‐old stands (~32 seeds/m2). Mean dispersal distance was lowest from 18‐yr‐old edges and greatest from >100‐yr‐old edges. Seed delivery into burned forest declined with increasing distance and increased with height of trees at live forest edges, and was consistently higher forP. contortathan for other conifers. Empirical dispersal kernels revealed that seed delivery from 18‐yr‐old edges was very low (≤2.4 seeds/m2) and concentrated within 10 m of the live edge, whereas seed delivery from >100‐yr‐old edges was >4.9 seeds/m2out to 80 m. When extrapolated throughout the burned landscape, estimated seed delivery was low (<49,400 seeds/ha) in >70% of areas that burned in short‐interval fire (<30 yr). As fire frequency increases, immaturity risk will be compounded in short‐interval fires because seed dispersal from surrounding young trees is limited.

     
    more » « less
  5. Abstract

    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building.

     
    more » « less