skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gillis, Kendra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The subgrid-scale (SGS) scalar variance represents the “unmixedness” of the unresolved small scales in large-eddy simulations (LES) of turbulent flows. Supersaturation variance can play an important role in the activation, growth, and evaporation of cloud droplets in a turbulent environment, and therefore efforts are being made to include SGS supersaturation fluctuations in microphysics models. We present results from a priori tests of SGS scalar variance models using data collected in turbulent Rayleigh–Bénard convection in the Michigan Tech Pi chamber for Rayleigh numbers Ra ∼ 108–109. Data from an array of 10 thermistors were spatially filtered and used to calculate the true SGS scalar variance, a scale-similarity model, and a gradient model for dimensionless filter widths ofh/Δ = 25, 14.3, and 10 (wherehis the height of the chamber and Δ is the spatial filter width). The gradient model was found to have fairly low correlations (ρ∼ 0.2), with the most probable values departing significantly from the one-to-one line in joint probability density functions (JPDFs). However, the scale-similarity model was found to have good behavior in JPDFs and was highly correlated (ρ∼ 0.8) with the true SGS variance. Results of the a priori tests were robust across the parameter space considered, with little dependence on Ra andh/Δ. The similarity model, which only requires an additional test filtering operation, is therefore a promising approach for modeling the SGS scalar variance in LES of cloud turbulence and other related flows.

     
    more » « less
  2. All-sky polarization images were measured from sunrise to sunset and during a cloud-free totality on 21 August 2017 in Rexburg, Idaho using two digital three-camera all-sky polarimeters and a time-sequential liquid-crystal-based all-sky polarimeter. Twenty-five polarimetric images were recorded during totality, revealing a highly dynamic evolution of the distribution of skylight polarization, with the degree of linear polarization becoming nearly zenith-symmetric by the end of totality. The surrounding environment was characterized with an infrared cloud imager that confirmed the complete absence of clouds during totality, an AERONET solar radiometer that measured aerosol properties, a portable weather station, and a hand-held spectrometer with satellite images that measured surface reflectance at and near the observation site. These observations confirm that previously observed totality patterns are general and not unique to those specific eclipses. The high temporal image resolution revealed a transition of a neutral point from the zenith in totality to the normal Babinet point just above the Sun after third contact, providing the first indication that the transition between totality and normal daytime polarization patterns occurs over of a time period of approximately 13 s.

     
    more » « less