skip to main content

Search for: All records

Creators/Authors contains: "Girard, Jeffrey M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, extensive research has emerged in affective computing on topics like automatic emotion recognition and determining the signals that characterize individual emotions. Much less studied, however, is expressiveness—the extent to which someone shows any feeling or emotion. Expressiveness is related to personality and mental health and plays a crucial role in social interaction. As such, the ability to automatically detect or predict expressiveness can facilitate significant advancements in areas ranging from psychiatric care to artificial social intelligence. Motivated by these potential applications, we present an extension of the BP4D+ data set [27] with human ratings of expressiveness and develop methods for (1) automatically predicting expressiveness from visual data and (2) defining relationships between interpretable visual signals and expressiveness. In addition, we study the emotional context in which expressiveness occurs and hypothesize that different sets of signals are indicative of expressiveness in different con-texts (e.g., in response to surprise or in response to pain). Analysis of our statistical models confirms our hypothesis. Consequently, by looking at expressiveness separately in distinct emotional contexts, our predictive models show significant improvements over baselines and achieve com-parable results to human performance in terms of correlation with the ground truth.
  2. The Duchenne smile hypothesis is that smiles that include eye constriction (AU6) are the product of genuine positive emotion, whereas smiles that do not are either falsified or related to negative emotion. This hypothesis has become very influential and is often used in scientific and applied settings to justify the inference that a smile is either true or false. However, empirical support for this hypothesis has been equivocal and some researchers have proposed that, rather than being a reliable indicator of positive emotion, AU6 may just be an artifact produced by intense smiles. Initial support for this proposal has been found when comparing smiles related to genuine and feigned positive emotion; however, it has not yet been examined when comparing smiles related to genuine positive and negative emotion. The current study addressed this gap in the literature by examining spontaneous smiles from 136 participants during the elicitation of amusement, embarrassment, fear, and pain (from the BP4D+ dataset). Bayesian multilevel regression models were used to quantify the associations between AU6 and self-reported amusement while controlling for smile intensity. Models were estimated to infer amusement from AU6 and to explain the intensity of AU6 using amusement. In both cases, controlling for smilemore »intensity substantially reduced the hypothesized association, whereas the effect of smile intensity itself was quite large and reliable. These results provide further evidence that the Duchenne smile is likely an artifact of smile intensity rather than a reliable and unique indicator of genuine positive emotion.« less