Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biddle, Jennifer F. (Ed.)ABSTRACT Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated. Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (nod) gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribednodgenes in the Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteobacteria,rather than Methylomirabilota as previously assumed. Gammaproteobacteria and Planctomycetia also transcribenod, but at lower relative abundance than UBA11136 in the upper ODZ. Thenod-transcribing Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for aerobic respiration, with additional electrons possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here namedptd) genes for a putative porin-cytochrome protein complex of unknown function, potentially involved in extracellular electron transfer. Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a significant player in marine nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.IMPORTANCEIn marine oxygen-deficient zones (ODZs), microbes transform bioavailable nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world’s largest ODZ, but the identity of the microbes transforming nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia transcribenodat lower levels. Our results pinpoint the microbes mediating a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine Alphaproteobacteria.more » « less
-
Amon, Cristina (Ed.)Abstract Methane clathrates on continental margins contain the largest stores of hydrocarbons on Earth, yet the role of biomolecules in clathrate formation and stability remains almost completely unknown. Here, we report new methane clathrate-binding proteins (CbpAs) of bacterial origin discovered in metagenomes from gas clathrate-bearing ocean sediments. CbpAs show similar suppression of methane clathrate growth as the commercial gas clathrate inhibitor polyvinylpyrrolidone and inhibit clathrate growth at lower concentrations than antifreeze proteins (AFPs) previously tested. Unlike AFPs, CbpAs are selective for clathrate over ice. CbpA3 adopts a nonglobular, extended structure with an exposed hydrophobic surface, and, unexpectedly, its TxxxAxxxAxx motif common to AFPs is buried and not involved in clathrate binding. Instead, simulations and mutagenesis suggest a bipartite interaction of CbpAs with methane clathrate, with the pyrrolidine ring of a highly conserved proline residue mediating binding by filling empty clathrate cages. The discovery that CbpAs exert such potent control on methane clathrate properties implies that biomolecules from native sediment bacteria may be important for clathrate stability and habitability.more » « less
-
Abstract Water, the most abundant compound on the surface of the Earth and probably in the universe, is the medium of biology, but is much more than that. Water is the most frequent actor in the chemistry of metabolism. Our quantitation here reveals that water accounts for 99.4% of metabolites in Escherichia coli by molar concentration. Between a third and a half of known biochemical reactions involve consumption or production of water. We calculated the chemical flux of water and observed that in the life of a cell, a given water molecule frequently and repeatedly serves as a reaction substrate, intermediate, cofactor, and product. Our results show that as an E. coli cell replicates in the presence of molecular oxygen, an average in vivo water molecule is chemically transformed or is mechanistically involved in catalysis ~ 3.7 times. We conclude that, for biological water, there is no distinction between medium and chemical participant. Chemical transformations of water provide a basis for understanding not only extant biochemistry, but the origins of life. Because the chemistry of water dominates metabolism and also drives biological synthesis and degradation, it seems likely that metabolism co-evolved with biopolymers, which helps to reconcile polymer-first versus metabolism-first theories for the origins of life.more » « less
-
Martiny, Jennifer B. (Ed.)ABSTRACT Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum -associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum -dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase ( nifH ) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales ) accounted for one-quarter of transcribed nifH genes. Furthermore, in dual-isotope tracer experiments, members of the Rhizobiales showed substantial incorporation of 13 CH 4 and 15 N 2 isotopes into their rRNA. Our study characterizes the core Sphagnum microbiome across large spatial scales and indicates that diazotrophic methanotrophs, here defined as obligate methanotrophs of the rare biosphere ( Methyloferula spp. of the Rhizobiales ) that also carry out diazotrophy, play a keystone role in coupling of the carbon and nitrogen cycles in nutrient-poor peatlands. IMPORTANCE Nitrogen availability frequently limits photosynthetic production in Sphagnum moss-dominated high-latitude peatlands, which are crucial carbon-sequestering ecosystems at risk to climate change effects. It has been previously suggested that microbial methane-fueled fixation of atmospheric nitrogen (N 2 ) may occur in these ecosystems, but this process and the organisms involved are largely uncharacterized. A combination of omics (DNA and RNA characterization) and dual-isotope incorporation approaches illuminated the functional diversity of Sphagnum -associated microbiomes and defined 12 bacterial genera in its core microbiome at the continental scale. Moreover, obligate diazotrophic methanotrophs showed high nitrogen fixation gene expression levels and incorporated a substantial amount of atmospheric nitrogen and methane-driven carbon into their biomass. Thus, these results point to a central role for members of the rare biosphere in Sphagnum microbiomes as keystone species that couple nitrogen fixation to methane oxidation in nutrient-poor peatlands.more » « less
-
Abstract Hydrogenation reactions are a major route of electron and proton flow on Earth. Interfacing geology and organic chemistry, hydrogenations occupy pivotal points in the Earth’s global geochemical cycles. Some examples of hydrogenation reactions on Earth today include the production and consumption of methane in both abiotic and biotic reactions, the reduction of protons in hydrothermal settings, and the biological synthesis and degradation of fatty acids. Hydrogenation reactions were likely important for prebiotic chemistry on the early Earth, and today serve as one of the fundamental reaction classes that enable cellular life to construct biomolecules. An understanding and awareness of hydrogenation reactions is helpful for comprehending the larger web of molecular and material inter-conversions on our planet. In this brief review we detail some important hydrogenation and dehydrogenation reactions as they relate to geology, biology, industry, and atmospheric chemistry. Such reactions have implications ranging from the suite of reactions on early Earth to industrial applications like the production of hydrocarbon fuel.more » « less
-
Abstract Signal peptides help newly synthesized proteins reach the cell membrane or be secreted. As part of a biological process key to immune response and surveillance in humans, and associated with diseases, for example, Alzheimer, remnant signal peptides and other transmembrane segments are proteolyzed by the intramembrane aspartyl protease (IAP) enzyme family. Here, we identified IAP orthologs throughout the tree of life. In addition to eukaryotes, IAPs are encoded in metabolically diverse archaea from a wide range of environments. We found three distinct clades of archaeal IAPs: (a)Euryarchaeota(eg, halophilicHalobacteriales, methanogenicMethanosarcinalesandMethanomicrobiales, marinePoseidoniales, acidophilicThermoplasmatales, hyperthermophilicArchaeoglobusspp.), (b) DPANN, and (c)Bathyarchaeota,Crenarchaeota, andAsgard. IAPs were also present in bacterial genomes from uncultivated members of Candidate Phylum Radiation, perhaps due to horizontal gene transfer from DPANN archaeal lineages. Sequence analysis of the catalytic motif YD…GXGD (where X is any amino acid) in IAPs from archaea and bacteria reveals WD inLokiarchaeotaand many residue types in the X position. Gene neighborhood analysis in halophilic archaea shows IAP genes near corrinoid transporters (btuCDFgenes). In marineEuryarchaeota, a putative BtuF‐like domain is found in N‐terminus of the IAP gene, suggesting a role for these IAPs in metal ion cofactor or other nutrient scavenging. Interestingly, eukaryotic IAP family members appear to have evolved either fromEuryarchaeotaor fromAsgardarchaea. Taken together, our phylogenetic and bioinformatics analysis should prompt experiments to probe the biological roles of IAPs in prokaryotic secretomes.more » « less
-
Abstract Peat mosses (Sphagnumspp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits.Sphagnummosses harbor a diverse assemblage of microbial partners, including N2‐fixing (diazotrophic) and CH4‐oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of theSphagnumphytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2(+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4, CO2) and nitrogen (NH4‐N) cycling from the belowground environment up toSphagnumand its associated microbiome, we identified a series of cascading impacts to theSphagnumphytobiome triggered by warming and elevated CO2. Under ambient CO2, warming increased plant‐available NH4‐N in surface peat, excess N accumulated inSphagnumtissue, and N2fixation activity decreased. Elevated CO2offset the effects of warming, disrupting the accumulation of N in peat andSphagnumtissue. Methane concentrations in porewater increased with warming irrespective of CO2treatment, resulting in a ~10× rise in methanotrophic activity withinSphagnumfrom the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane‐induced N2fixation and significant losses of keystone microbial taxa. In addition to changes in theSphagnummicrobiome, we observed ~94% mortality ofSphagnumbetween the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N‐availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of theSphagnumphytobiome to rising temperatures and atmospheric CO2concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.more » « less