Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2024
-
Free, publicly-accessible full text available October 1, 2023
-
The magnitude of stream and river carbon dioxide (CO 2 ) emission is affected by seasonal changes in watershed biogeochemistry and hydrology. Global estimates of this flux are, however, uncertain, relying on calculated values for CO 2 and lacking spatial accuracy or seasonal variations critical for understanding macroecosystem controls of the flux. Here, we compiled 5,910 direct measurements of fluvial CO 2 partial pressure and modeled them against watershed properties to resolve reach-scale monthly variations of the flux. The direct measurements were then combined with seasonally resolved gas transfer velocity and river surface area estimates from a recent global hydrography dataset to constrain the flux at the monthly scale. Globally, fluvial CO 2 emission varies between 112 and 209 Tg of carbon per month. The monthly flux varies much more in Arctic and northern temperate rivers than in tropical and southern temperate rivers (coefficient of variation: 46 to 95 vs. 6 to 12%). Annual fluvial CO 2 emission to terrestrial gross primary production (GPP) ratio is highly variable across regions, ranging from negligible (<0.2%) to 18%. Nonlinear regressions suggest a saturating increase in GPP and a nonsaturating, steeper increase in fluvial CO 2 emission with discharge across regions, which leadsmore »
-
Abstract Arctic rivers drain ~15% of the global land surface and significantly influence local communities and economies, freshwater and marine ecosystems, and global climate. However, trusted and public knowledge of pan-Arctic rivers is inadequate, especially for small rivers and across Eurasia, inhibiting understanding of the Arctic response to climate change. Here, we calculate daily streamflow in 486,493 pan-Arctic river reaches from 1984-2018 by assimilating 9.18 million river discharge estimates made from 155,710 satellite images into hydrologic model simulations. We reveal larger and more heterogenous total water export (3-17% greater) and water export acceleration (factor of 1.2-3.3 larger) than previously reported, with substantial differences across basins, ecoregions, stream orders, human regulation, and permafrost regimes. We also find significant changes in the spring freshet and summer stream intermittency. Ultimately, our results represent an updated, publicly available, and more accurate daily understanding of Arctic rivers uniquely enabled by recent advances in hydrologic modeling and remote sensing.
-
Remote sensing of river discharge (RSQ) is a burgeoning field rife with innovation. This innovation has resulted in a highly non-cohesive subfield of hydrology advancing at a rapid pace, and as a result misconceptions, mis-citations, and confusion are apparent among authors, readers, editors, and reviewers. While the intellectually diverse subfield of RSQ practitioners can parse this confusion, the broader hydrology community views RSQ as a monolith and such confusion can be damaging. RSQ has not been comprehensively summarized over the past decade, and we believe that a summary of the recent literature has a potential to provide clarity to practitioners and general hydrologists alike. Therefore, we here summarize a broad swath of the literature, and find after our reading that the most appropriate way to summarize this literature is first by application area (into methods appropriate for gauged, semi-gauged, regionally gauged, politically ungauged, and totally ungauged basins) and next by methodology. We do not find categorizing by sensor useful, and everything from un-crewed aerial vehicles (UAVs) to satellites are considered here. Perhaps the most cogent theme to emerge from our reading is the need for context. All RSQ is employed in the service of furthering hydrologic understanding, and we arguemore »
-
Surface meltwater generated on ice shelves fringing the Antarctic Ice Sheet can drive ice-shelf collapse, leading to ice sheet mass loss and contributing to global sea level rise. A quantitative assessment of supraglacial lake evolution is required to understand the influence of Antarctic surface meltwater on ice-sheet and ice-shelf stability. Cloud computing platforms have made the required remote sensing analysis computationally trivial, yet a careful evaluation of image processing techniques for pan-Antarctic lake mapping has yet to be performed. This work paves the way for automating lake identification at a continental scale throughout the satellite observational record via a thorough methodological analysis. We deploy a suite of different trained supervised classifiers to map and quantify supraglacial lake areas from multispectral Landsat-8 scenes, using training data generated via manual interpretation of the results from k-means clustering. Best results are obtained using training datasets that comprise spectrally diverse unsupervised clusters from multiple regions and that include rock and cloud shadow classes. We successfully apply our trained supervised classifiers across two ice shelves with different supraglacial lake characteristics above a threshold sun elevation of 20°, achieving classification accuracies of over 90% when compared to manually generated validation datasets. The application of our trainedmore »