skip to main content

Search for: All records

Creators/Authors contains: "Glenn, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Future sea-level rise poses an existential threat for many river deltas, yet quantifying the effect of sea-level changes on these coastal landforms remains a challenge. Sea-level changes have been slow compared to other coastal processes during the instrumental record, such that our knowledge comes primarily from models, experiments, and the geologic record. Here we review the current state of science on river delta response to sea-level change, including models and observations from the Holocene until 2300 CE. We report on improvements in the detection and modeling of past and future regional sea-level change, including a better understanding of the underlying processes and sources of uncertainty. We also see significant improvements in morphodynamic delta models. Still, substantial uncertainties remain, notably on present and future subsidence rates in and near deltas. Observations of delta submergence and land loss due to modern sea-level rise also remain elusive, posing major challenges to model validation. ▪ There are large differences in the initiation time and subsequent delta progradation during the Holocene, likely from different sea-level and sediment supply histories. ▪ Modern deltas are larger and will face faster sea-level rise than during their Holocene growth, making them susceptible to forced transgression. ▪ Regional sea-level projections have been much improved in the past decade and now also isolate dominant sources of uncertainty, such as the Antarctic ice sheet. ▪ Vertical land motion in deltas can be the dominant source of relative sea-level change and the dominant source of uncertainty; limited observations complicate projections. ▪ River deltas globally might lose 5% (∼35,000 km 2 ) of their surface area by 2100 and 50% by 2300 due to relative sea-level rise under a high-emission scenario. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see for revised estimates. 
    more » « less
    Free, publicly-accessible full text available May 30, 2024
  2. Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones. 
    more » « less
  3. Abstract

    We use heat flux measurements colocated with seismic reflection profiles over a buried basement high on the Juan de Fuca plate ∼25 km seaward of the deformation front offshore Oregon to test for the presence of hydrothermal circulation in the oceanic crust. We also revisit heat flux data crossing a buried basement high ∼25 km seaward of the deformation front ∼150 km north, offshore Washington. Seafloor heat flux is inversely correlated with sediment thickness, consistent with vigorous hydrothermal circulation in the basement aquifer homogenizing temperatures at the top of the basement. Heat flux immediately above the summit of the basement highs is greater than expected solely from conduction. Fluid seepage at rates of ∼2.6–5.4 cm yr−1in a 1–1.5 km‐wide conduit through ∼800–1,300 m thick sediment sections above these basement highs can explain these observations. Observations of thermally significant fluid seepage through sediment >225 m thick on oceanic crust are unprecedented. High sediment permeability, high fluid overpressure in the basement, or a combination of both is required to drive fluid seepage at the observed rates. We infer that rapid seepage occurs because the basement highs rise above the low permeability basal sediment with their tops protruding into the base of high permeability Nitinat or Astoria Fan sediment. Seepage from basement highs penetrating into the submarine fans can affect the thermal state of crust entering the subduction zone.

    more » « less
  4. Abstract

    Meteorological drivers of groundwater recharge for spring (February–June), fall (October–January), and recharge‐year (October–June) recharge seasons were evaluated for northern New England and upstate New York from 1989 to 2018. Monthly groundwater recharge was computed at 21 observation wells by subtracting the water levels at the end of each month from the level of the previous month; only positive monthly values were used to compute seasonal recharge. Precipitation, temperature, sea‐level pressure, 500‐mb geopotential heights, and various teleconnection indices were tested as explanatory variables for the interannual variability of recharge using random forest machine learning models. Precipitation within recharge seasons was positively correlated with groundwater recharge for most wells in all seasons. In general, whilst groundwater recharge in the study area was generally highest during the months of March and April, October precipitation was an important month for explaining the interannual groundwater recharge variability. This is likely because the variability in recharge in October may be high or low for given years. Sea‐level pressure and 500‐mb heights were typically inversely correlated with groundwater recharge during the recharge‐year and fall recharge seasons, as higher sea‐level pressure and heights are usually associated with clearer skies and less precipitation. The North Atlantic Oscillation, Pacific‐North American pattern, and Pacific Decadal Oscillation teleconnections affected groundwater recharge differently by well and season. The influence of groundwater recharge on minimum daily streamflows during the subsequent summer/fall was also analysed. Summer precipitation was the most important explanatory variable for study streams whilst groundwater recharge and summer air temperature were significant variables for a few streams.

    more » « less
  5. This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths. 
    more » « less
  6. Inclusions of basaltic melt trapped inside of olivine phenocrysts during igneous crystallization provide a rich, crystal-scale record of magmatic processes ranging from mantle melting to ascent, eruption, and quenching of magma during volcanic eruptions. Melt inclusions are particularly valuable for retaining information on volatiles such as H 2 O and CO 2 that are normally lost by vesiculation and degassing as magma ascends and erupts. However, the record preserved in melt inclusions can be variably obscured by postentrapment processes, and thus melt inclusion research requires careful evaluation of the effects of such processes. Here we review processes by which melt inclusions are trapped and modified after trapping, describe new opportunities for studying the rates of magmatic and volcanic processes over a range of timescales using the kinetics of post-trapping processes, and describe recent developments in the use of volatile contents of melt inclusions to improve our understanding of how volcanoes work. ▪  Inclusions of silicate melt (magma) trapped inside of crystals formed by magma crystallization provide a rich, detailed record of what happens beneath volcanoes. ▪  These inclusions record information ranging from how magma forms deep inside Earth to its final hours as it ascends to the surface and erupts. ▪  The melt inclusion record, however, is complex and hazy because of many processes that modify the inclusions after they become trapped in crystals. ▪  Melt inclusions provide a primary archive of dissolved gases in magma, which are the key ingredients that make volcanoes erupt explosively. 
    more » « less