skip to main content


Search for: All records

Creators/Authors contains: "Glidden, Caroline K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract Individual animals in natural populations tend to host diverse parasite species concurrently over their lifetimes. In free‐living ecological communities, organismal life histories shape interactions with their environment, which ultimately forms the basis of ecological succession. However, the structure and dynamics of mammalian parasite communities have not been contextualized in terms of primary ecological succession, in part because few datasets track occupancy and abundance of multiple parasites in wild hosts starting at birth. Here, we studied community dynamics of 12 subtypes of protozoan microparasites ( Theileria spp.) in a herd of African buffalo. We show that Theileria communities followed predictable patterns of succession underpinned by four different parasite life history strategies. However, in contrast to many free‐living communities, network complexity decreased with host age. Examining parasite communities through the lens of succession may better inform the effect of complex within host eco‐evolutionary dynamics on infection outcomes, including parasite co‐existence through the lifetime of the host. 
    more » « less
  3. Ramos, Alberto Novaes (Ed.)
    The spatio-temporal distribution of leishmaniasis, a parasitic vector-borne zoonotic disease, is significantly impacted by land-use change and climate warming in the Americas. However, predicting and containing outbreaks is challenging as the zoonotic Leishmania system is highly complex: leishmaniasis (visceral, cutaneous and muco-cutaneous) in humans is caused by up to 14 different Leishmania species, and the parasite is transmitted by dozens of sandfly species and is known to infect almost twice as many wildlife species. Despite the already broad known host range, new hosts are discovered almost annually and Leishmania transmission to humans occurs in absence of a known host. As such, the full range of Leishmania hosts is undetermined, inhibiting the use of ecological interventions to limit pathogen spread and the ability to accurately predict the impact of global change on disease risk. Here, we employed a machine learning approach to generate trait profiles of known zoonotic Leishmania wildlife hosts (mammals that are naturally exposed and susceptible to infection) and used trait-profiles of known hosts to identify potentially unrecognized hosts. We found that biogeography, phylogenetic distance, and study effort best predicted Leishmania host status. Traits associated with global change, such as agricultural land-cover, urban land-cover, and climate, were among the top predictors of host status. Most notably, our analysis suggested that zoonotic Leishmania hosts are significantly undersampled, as our model predicted just as many unrecognized hosts as unknown hosts. Overall, our analysis facilitates targeted surveillance strategies and improved understanding of the impact of environmental change on local transmission cycles. 
    more » « less
  4. Abstract Predicting how increasing intensity of human–environment interactions affects pathogen transmission is essential to anticipate changing disease risks and identify appropriate mitigation strategies. Vector-borne diseases (VBDs) are highly responsive to environmental changes, but such responses are notoriously difficult to isolate because pathogen transmission depends on a suite of ecological and social responses in vectors and hosts that may differ across species. Here we use the emerging tools of cumulative pressure mapping and machine learning to better understand how the occurrence of six medically important VBDs, differing in ecology from sylvatic to urban, respond to multidimensional effects of human pressure. We find that not only is human footprint—an index of human pressure, incorporating built environments, energy and transportation infrastructure, agricultural lands and human population density—an important predictor of VBD occurrence, but there are clear thresholds governing the occurrence of different VBDs. Across a spectrum of human pressure, diseases associated with lower human pressure, including malaria, cutaneous leishmaniasis and visceral leishmaniasis, give way to diseases associated with high human pressure, such as dengue, chikungunya and Zika. These heterogeneous responses of VBDs to human pressure highlight thresholds of land-use transitions that may lead to abrupt shifts in infectious disease burdens and public health needs. 
    more » « less
  5. McDowell, Mary Ann (Ed.)
    The incidence of vector-borne diseases is rising as deforestation, climate change, and globalization bring humans in contact with arthropods that can transmit pathogens. In particular, incidence of American Cutaneous Leishmaniasis (ACL), a disease caused by parasites transmitted by sandflies, is increasing as previously intact habitats are cleared for agriculture and urban areas, potentially bringing people into contact with vectors and reservoir hosts. Previous evidence has identified dozens of sandfly species that have been infected with and/or transmit Leishmania parasites. However, there is an incomplete understanding of which sandfly species transmit the parasite, complicating efforts to limit disease spread. Here, we apply machine learning models (boosted regression trees) to leverage biological and geographical traits of known sandfly vectors to predict potential vectors. Additionally, we generate trait profiles of confirmed vectors and identify important factors in transmission. Our model performed well with an average out of sample accuracy of 86%. The models predict that synanthropic sandflies living in areas with greater canopy height, less human modification, and within an optimal range of rainfall are more likely to be Leishmania vectors. We also observed that generalist sandflies that are able to inhabit many different ecoregions are more likely to transmit the parasites. Our results suggest that Psychodopygus amazonensis and Nyssomia antunesi are unidentified potential vectors, and should be the focus of sampling and research efforts. Overall, we found that our machine learning approach provides valuable information for Leishmania surveillance and management in an otherwise complex and data sparse system. 
    more » « less