Many studies concluded that magnetic fields suppress star formation in molecular clouds and Milky Way like galaxies. However, most of these studies are based on fully developed fields that have reached the saturation level, with little work on investigating how an initial weak primordial field affects star formation in low metallicity environments. In this paper, we investigate the impact of a weak initial field on low metallicity dwarf galaxies. We perform high-resolution arepo simulations of five isolated dwarf galaxies. Two models are hydrodynamical, two start with a primordial magnetic field of 10$^{-6} \, \mu$G and different sub-solar metallicities, and one starts with a saturated field of 10$^{-2} \, \mu$G. All models include a non-equilibrium, time-dependent chemical network that includes the effects of gas shielding from the ambient ultraviolet field. Sink particles form directly from the gravitational collapse of gas and are treated as star-forming clumps that can accrete gas. We vary the ambient uniform far ultraviolet field, and cosmic ray ionization rate between 1 per cent and 10 per cent of solar values. We find that the magnetic field has little impact on the global star formation rate (SFR), which is in tension with some previously published results. We further find that themore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract The formation of globular clusters and their relation to the distribution of dark matter have long puzzled astronomers. One of the most recently proposed globular cluster formation channels ties ancient star clusters to the large-scale streaming velocity of baryons relative to dark matter in the early universe. These streaming velocities affect the global infall of baryons into dark matter halos, the high-redshift halo mass function, and the earliest generations of stars. In some cases, streaming velocities may result in dense regions of dark matter-free gas that becomes Jeans unstable, potentially leading to the formation of compact star clusters. We investigate this hypothesis using cosmological hydrodynamical simulations that include a full chemical network and the formation and destruction of H2, a process crucial for the formation of the first stars. We find that high-density gas in regions with significant streaming velocities is indeed somewhat offset from the centers of dark matter halos, but this offset is typically significantly smaller than the virial radius. Gas outside of dark matter halos never reaches Jeans-unstable densities in our simulations. We postulate that low-level (
Z ≈ 10−3Z ⊙) metal enrichment by Population III supernovae may enable cooling in the extra-virial regions, allowing gas outside of darkmore » -
ABSTRACT In the hierarchical view of star formation, giant molecular clouds (GMCs) undergo fragmentation to form small-scale structures made up of stars and star clusters. Here we study the connection between young star clusters and cold gas across a range of extragalactic environments by combining the high resolution (1″) PHANGS–ALMA catalogue of GMCs with the star cluster catalogues from PHANGS–HST. The star clusters are spatially matched with the GMCs across a sample of 11 nearby star-forming galaxies with a range of galactic environments (centres, bars, spiral arms, etc.). We find that after 4 − 6 Myr the star clusters are no longer associated with any gas clouds. Additionally, we measure the autocorrelation of the star clusters and GMCs as well as their cross-correlation to quantify the fractal nature of hierarchical star formation. Young (≤10 Myr) star clusters are more strongly autocorrelated on kpc and smaller spatial scales than the $\gt \, 10$ Myr stellar populations, indicating that the hierarchical structure dissolves over time.
-
Abstract We combine JWST observations with Atacama Large Millimeter/submillimeter Array CO and Very Large Telescope MUSE H
α data to examine off-spiral arm star formation in the face-on, grand-design spiral galaxy NGC 628. We focus on the northern spiral arm, around a galactocentric radius of 3–4 kpc, and study two spurs. These form an interesting contrast, as one is CO-rich and one CO-poor, and they have a maximum azimuthal offset in MIRI 21μ m and MUSE Hα of around 40° (CO-rich) and 55° (CO-poor) from the spiral arm. The star formation rate is higher in the regions of the spurs near spiral arms, but the star formation efficiency appears relatively constant. Given the spiral pattern speed and rotation curve of this galaxy and assuming material exiting the arms undergoes purely circular motion, these offsets would be reached in 100–150 Myr, significantly longer than the 21μ m and Hα star formation timescales (both < 10 Myr). The invariance of the star formation efficiency in the spurs versus the spiral arms indicates massive star formation is not only triggered in spiral arms, and cannot simply occur in the arms and then drift away from the wave pattern. These early JWST results show that in situ star formation likelymore » -
ABSTRACT The processes of star formation and feedback, regulating the cycle of matter between gas and stars on the scales of giant molecular clouds (GMCs; ∼100 pc), play a major role in governing galaxy evolution. Measuring the time-scales of GMC evolution is important to identify and characterize the specific physical mechanisms that drive this transition. By applying a robust statistical method to high-resolution CO and narrow-band H α imaging from the PHANGS survey, we systematically measure the evolutionary timeline from molecular clouds to exposed young stellar regions on GMC scales, across the discs of an unprecedented sample of 54 star-forming main-sequence galaxies (excluding their unresolved centres). We find that clouds live for about 1−3 GMC turbulence crossing times (5−30 Myr) and are efficiently dispersed by stellar feedback within 1−5 Myr once the star-forming region becomes partially exposed, resulting in integrated star formation efficiencies of 1−8 per cent. These ranges reflect physical galaxy-to-galaxy variation. In order to evaluate whether galactic environment influences GMC evolution, we correlate our measurements with average properties of the GMCs and their local galactic environment. We find several strong correlations that can be physically understood, revealing a quantitative link between galactic-scale environmental properties and the small-scale GMC evolution. Notably, the measured CO-visible cloudmore »
-
Abstract We present a rich, multiwavelength, multiscale database built around the PHANGS–ALMA CO (2 − 1) survey and ancillary data. We use this database to present the distributions of molecular cloud populations and subgalactic environments in 80 PHANGS galaxies, to characterize the relationship between population-averaged cloud properties and host galaxy properties, and to assess key timescales relevant to molecular cloud evolution and star formation. We show that PHANGS probes a wide range of kpc-scale gas, stellar, and star formation rate (SFR) surface densities, as well as orbital velocities and shear. The population-averaged cloud properties in each aperture correlate strongly with both local environmental properties and host galaxy global properties. Leveraging a variable selection analysis, we find that the kpc-scale surface densities of molecular gas and SFR tend to possess the most predictive power for the population-averaged cloud properties. Once their variations are controlled for, galaxy global properties contain little additional information, which implies that the apparent galaxy-to-galaxy variations in cloud populations are likely mediated by kpc-scale environmental conditions. We further estimate a suite of important timescales from our multiwavelength measurements. The cloud-scale freefall time and turbulence crossing time are ∼5–20 Myr, comparable to previous cloud lifetime estimates. The timescales formore »
-
ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour ofmore »
-
ABSTRACT We introduce a new suite of simulations, ‘The Cloud Factory’, which self-consistently forms molecular cloud complexes at high enough resolution to resolve internal substructure (up to 0.25 M⊙ in mass) all while including galactic-scale forces. We use a version of the arepo code modified to include a detailed treatment of the physics of the cold molecular ISM, and an analytical galactic gravitational potential for computational efficiency. The simulations have nested levels of resolution, with the lowest layer tied to tracer particles injected into individual cloud complexes. These tracer refinement regions are embedded in the larger simulation so continue to experience forces from outside the cloud. This allows the simulations to act as a laboratory for testing the effect of galactic environment on star formation. Here we introduce our method and investigate the effect of galactic environment on filamentary clouds. We find that cloud complexes formed after a clustered burst of feedback have shorter lengths and are less likely to fragment compared to quiescent clouds (e.g. the Musca filament) or those dominated by the galactic potential (e.g. Nessie). Spiral arms and differential rotation preferentially align filaments, but strong feedback randomizes them. Long filaments formed within the cloud complexes are necessarily coherentmore »