Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Maximal Independent Set (MIS) is one of the fundamental problems in distributed computing. The round (time) complexity of distributed MIS has traditionally focused on the worstcase time for all nodes to finish. The bestknown (randomized) MIS algorithms take O(log n) worstcase rounds on general graphs (where n is the number of nodes). Breaking the O(log n) worstcase bound has been a longstanding open problem, while currently the bestknown lower bound is [EQUATION] rounds. Motivated by the goal to reduce total energy consumption in energyconstrained networks such as sensor and ad hoc wireless networks, we take an alternative approach to measuring performance. We focus on minimizing the total (or equivalently, the average) time for all nodes to finish. It is not clear whether the currently bestknown algorithms yield constantround (or even o(log n)) nodeaveraged round complexity for MIS in general graphs. We posit the sleeping model, a generalization of the traditional model, that allows nodes to enter either "sleep" or "waking" states at any round. While waking state corresponds to the default state in the traditional model, in sleeping state a node is "offline", i.e., it does not send or receive messages (and messages sent to it are dropped as well)more »

This paper focuses on showing timemessage tradeoffs in distributed algorithms for fundamental problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST), minimum cut, and many graph verification problems. We consider the synchronous CONGEST distributed computing model and assume that each node has initial knowledge of itself and the identifiers of its neighbors  the socalled KT_1 model  a wellstudied model that also naturally arises in many applications. Recently, it has been established that one can obtain (almost) singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time and message complexity (up to polylogarithmic factors), for many fundamental problems in the standard KT_0 model (where nodes have only local knowledge of themselves and not their neighbors). The situation is less clear in the KT_1 model. In this paper, we present several new distributed algorithms in the KT_1 model that trade off between time and message complexity. Our distributed algorithms are based on a uniform and general approach which involves constructing a sparsified spanning subgraph of the original graph  called a danner  that trades off the number of edges with the diameter of the sparsifier. In particular, a key ingredient of our approach is amore »