skip to main content

Search for: All records

Creators/Authors contains: "Goddi, Ciriaco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present 500 and 700 au resolution 1 and 3 mm Atacama Large Millimeter/submillimeter Array observations, respectively, of protostellar cores in protoclusters Sagittarius B2 (Sgr B2) North (N) and Main (M), parts of the most actively star-forming cloud in our Galaxy. Previous lower-resolution (5000 au) 3 mm observations of this region detected ∼150 sources inferred to be young stellar objects (YSOs) withM> 8M. With a 10-fold increase in resolution, we detect 371 sources at 3 mm and 218 sources in the smaller field of view at 1 mm. The sources seen at low resolution are observed to fragment into an average of two objects. About one-third of the observed sources fragment. Most of the sources we report are marginally resolved and are at least partially optically thick. We determine that the observed sources are most consistent with Stage 0/I YSOs, i.e., rotationally supported disks with an active protostar and an envelope, that are warmer than those observed in the solar neighborhood. We report source-counting-based inferred stellar mass and the star formation rate of the cloud: 2800Mand 0.0038Myr−1for Sgr B2 N and 6900Mand 0.0093Myr−1for Sgr B2 M, respectively.

    more » « less
  2. Abstract This paper analyses images from 43 to 340 GHz to trace the structure of the Source I (SrcI) disk in Orion-KL with ∼12 au resolution. The data reveal an almost edge-on disk with an outside diameter ∼100 au, which is heated from the inside. The high opacity at 220–340 GHz hides the internal structure and presents a surface temperature ∼500 K. Images at 43, 86 and 99 GHz reveal structure within the disk. At 43 GHz there is bright compact emission with brightness temperature ∼1300 K. Another feature, most prominent at 99 GHz, is a warped ridge of emission. The data can be explained by a simple model with a hot inner structure, seen through cooler material. A wide-angle outflow mapped in SiO emission ablates material from the interior of the disk, and extends in a bipolar outflow over 1000 au along the rotation axis of the disk. SiO v = 0, J = 5–4 emission appears to have a localized footprint in the warped ridge. These observations suggest that the ridge is the working surface of the disk, and heated by accretion and the outflow. The disk structure may be evolving, with multiple accretion and outflow events. We discuss two sources of variability: (1) variable accretion onto the disk as SrcI travels through the filamentary debris from the Becklin–Neugebauer Object-SrcI encounter ∼550 yr ago; and (2) episodic accretion from the disk onto the protostar, which may trigger multiple outflows. The warped inner-disk structure is direct evidence that SrcI could be a binary experiencing episodic accretion. 
    more » « less
  3. Abstract The Orion Nebula Cluster (ONC) is the nearest dense star-forming region at ∼400 pc away, making it an ideal target to study the impact of high stellar density and proximity to massive stars (the Trapezium) on protoplanetary disk evolution. The OMC1 molecular cloud is a region of high extinction situated behind the Trapezium in which actively forming stars are shielded from the Trapezium’s strong radiation. In this work, we survey disks at high resolution with Atacama Large Millimeter/submillimeter Array at three wavelengths with resolutions of 0.″095 (3 mm; Band 3), 0.″048 (1.3 mm; Band 6), and 0.″030 (0.85 mm; Band 7) centered on radio Source I. We detect 127 sources, including 15 new sources that have not previously been detected at any wavelength. 72 sources are spatially resolved at 3 mm, with sizes from ∼8–100 au. We classify 76 infrared-detected sources as foreground ONC disks and the remainder as embedded OMC1 disks. The two samples have similar disk sizes, but the OMC1 sources have a dense and centrally concentrated spatial distribution, indicating they may constitute a spatially distinct subcluster. We find smaller disk sizes and a lack of large (>75 au) disks in both our samples compared to other nearby star-forming regions, indicating that environmental disk truncation processes are significant. While photoevaporation from nearby massive Trapezium stars may account for the smaller disks in the ONC, the embedded sources in OMC1 are hidden from this radiation and thus must truncated by some other mechanism, possibly dynamical truncation or accretion-driven contraction. 
    more » « less
  4. Abstract The collimation of relativistic jets launched from the vicinity of supermassive black holes (SMBHs) at the centers of active galactic nuclei (AGNs) is one of the key questions to understand the nature of AGN jets. However, little is known about the detailed jet structure for AGN like quasars since very high angular resolutions are required to resolve these objects. We present very long baseline interferometry (VLBI) observations of the archetypical quasar 3C 273 at 86 GHz, performed with the Global Millimeter VLBI Array, for the first time including the Atacama Large Millimeter/submillimeter Array. Our observations achieve a high angular resolution down to ∼60 μ as, resolving the innermost part of the jet ever on scales of ∼10 5 Schwarzschild radii. Our observations, including close-in-time High Sensitivity Array observations of 3C 273 at 15, 22, and 43 GHz, suggest that the inner jet collimates parabolically, while the outer jet expands conically, similar to jets from other nearby low-luminosity AGNs. We discovered the jet collimation break around 10 7 Schwarzschild radii, providing the first compelling evidence for structural transition in a quasar jet. The location of the collimation break for 3C 273 is farther downstream from the sphere of gravitational influence (SGI) from the central SMBH. With the results for other AGN jets, our results show that the end of the collimation zone in AGN jets is governed not only by the SGI of the SMBH but also by the more diverse properties of the central nuclei. 
    more » « less
  5. null (Ed.)
  6. In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3−3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5 × 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.

    more » « less
    Free, publicly-accessible full text available January 1, 2025
  7. Abstract

    In 2017 the Event Horizon Telescope (EHT) observed the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz (λ= 1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT data sets. The high observing frequency means that pulsars—which typically exhibit steep emission spectra—are expected to be very faint. However, it also negates pulse scattering, an effect that could hinder pulsar detections in the Galactic center. Additionally, magnetars or a secondary inverse Compton emission could be stronger at millimeter wavelengths than at lower frequencies. We present a search for pulsars close to Sgr A* using the data from the three most sensitive stations in the EHT 2017 campaign: the Atacama Large Millimeter/submillimeter Array, the Large Millimeter Telescope, and the IRAM 30 m Telescope. We apply three detection methods based on Fourier-domain analysis, the fast folding algorithm, and single-pulse searches targeting both pulsars and burst-like transient emission. We use the simultaneity of the observations to confirm potential candidates. No new pulsars or significant bursts were found. Being the first pulsar search ever carried out at such high radio frequencies, we detail our analysis methods and give a detailed estimation of the sensitivity of the search. We conclude that the EHT 2017 observations are only sensitive to a small fraction (≲2.2%) of the pulsars that may exist close to Sgr A*, motivating further searches for fainter pulsars in the region.

    more » « less
    Free, publicly-accessible full text available November 29, 2024
  8. Abstract

    Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈∣v∣〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (∣vint∣ < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*.

    more » « less
    Free, publicly-accessible full text available November 1, 2024