skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Godoy, Oscar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT With many species interacting in nature, determining which interactions describe community dynamics is nontrivial. By applying a computational modeling approach to an extensive field survey, we assessed the importance of interactions from plants (both inter‐ and intra‐specific), pollinators and insect herbivores on plant performance (i.e., viable seed production). We compared the inclusion of interaction effects as aggregate guild‐level terms versus terms specific to taxonomic groups. We found that a continuum from positive to negative interactions, containing mostly guild‐level effects and a few strong taxonomic‐specific effects, was sufficient to describe plant performance. While interactions with herbivores and intraspecific plants varied from weakly negative to weakly positive, heterospecific plants mainly promoted competition and pollinators facilitated plants. The consistency of these empirical findings over 3 years suggests that including the guild‐level effects and a few taxonomic‐specific groups rather than all pairwise and high‐order interactions, can be sufficient for accurately describing species variation in plant performance across natural communities. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. ABSTRACT Community assembly provides the foundation for applications in biodiversity conservation, climate change, invasion, restoration and synthetic ecology. However, predicting and prioritising assembly outcomes remains difficult. We address this challenge via a mechanism‐free approach useful when little data or knowledge exist (LOVE; Learning Outcomes Via Experiments). We carry out assembly experiments (‘actions’, here, random combinations of species additions) potentially in multiple environments, wait, and measure abundance outcomes. We then train a model to predict outcomes of novel actions or prioritise actions that would yield the most desirable outcomes. Across 10 single‐ and multi‐environment datasets, when trained on 89 randomly selected actions,LOVEpredicts outcomes with 0.5%–3.4% mean error, and prioritises actions for maximising richness, maximising abundance, or removing unwanted species, with 94%–99% mean true positive rate and 10%–84% mean true negative rate across tasks.LOVEcomplements existing mechanism‐first approaches for community ecology and may help address numerous applied challenges. 
    more » « less
  3. In structured populations, persistence under environmental change may be particularly threatened when abiotic factors simultaneously negatively affect survival and reproduction of several life cycle stages, as opposed to a single stage. Such effects can then be exacerbated when species interactions generate reciprocal feedbacks between the demographic rates of the different species. Despite the importance of such demographic feedbacks, forecasts that account for them are limited as individual-based data on interacting species are perceived to be essential for such mechanistic forecasting—but are rarely available. Here, we first review the current shortcomings in assessing demographic feedbacks in population and community dynamics. We then present an overview of advances in statistical tools that provide an opportunity to leverage population-level data on abundances of multiple species to infer stage-specific demography. Lastly, we showcase a state-of-the-art Bayesian method to infer and project stage-specific survival and reproduction for several interacting species in a Mediterranean shrub community. This case study shows that climate change threatens populations most strongly by changing the interaction effects of conspecific and heterospecific neighbours on both juvenile and adult survival. Thus, the repurposing of multi-species abundance data for mechanistic forecasting can substantially improve our understanding of emerging threats on biodiversity. 
    more » « less
  4. Pollination plays a central role in both crop production and maintaining biodiversity. However, habitat loss, pesticides, invasive species and larger environmental fluctuations are contributing to a dramatic decline of pollinators worldwide. Different management solutions require knowledge of how ecological communities will respond following interventions. Yet, anticipating the response of these systems to interventions remains extremely challenging due to the unpredictable nature of ecological communities, whose nonlinear behaviour depends on the specific details of species interactions and the various unknown or unmeasured confounding factors. Here, we propose that this knowledge can be derived by following a probabilistic systems analysis rooted on non-parametric causal inference. The main outcome of this analysis is to estimate the extent to which a hypothesized cause can increase or decrease the probability that a given effect happens without making assumptions about the form of the cause–effect relationship. We discuss a road map for how this analysis can be accomplished with the aim of increasing our system-level causative knowledge of natural communities. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’. 
    more » « less
  5. Adler, Frederick (Ed.)
  6. Ecological theory predicts that species interactions embedded in multitrophic networks shape the opportunities for species to persist. However, the lack of experimental support of this prediction has limited our understanding of how species interactions occurring within and across trophic levels simultaneously regulate the maintenance of biodiversity. Here, we integrate a mathematical approach and detailed experiments in plant–pollinator communities to demonstrate the need to jointly account for species interactions within and across trophic levels when estimating the ability of species to persist. Within the plant trophic level, we show that the persistence probability of plant species increases when introducing the effects of plant–pollinator interactions. Across trophic levels, we show that the persistence probabilities of both plants and pollinators exhibit idiosyncratic changes when experimentally manipulating the multitrophic structure. Importantly, these idiosyncratic effects are not recovered by traditional simulations. Our work provides tractable experimental and theoretical platforms upon which it is possible to investigate the multitrophic factors affecting species persistence in ecological communities. 
    more » « less