skip to main content


Search for: All records

Creators/Authors contains: "Gohari, Parham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In cooperative multi-agent reinforcement learning (Co-MARL), a team of agents must jointly optimize the team's longterm rewards to learn a designated task. Optimizing rewards as a team often requires inter-agent communication and data sharing, leading to potential privacy implications. We assume privacy considerations prohibit the agents from sharing their environment interaction data. Accordingly, we propose Privacy-Engineered Value Decomposition Networks (PE-VDN), a Co-MARL algorithm that models multi-agent coordination while provably safeguarding the confidentiality of the agents' environment interaction data. We integrate three privacy-engineering techniques to redesign the data flows of the VDN algorithm-an existing Co-MARL algorithm that consolidates the agents' environment interaction data to train a central controller that models multi-agent coordination-and develop PE-VDN. In the first technique, we design a distributed computation scheme that eliminates Vanilla VDN's dependency on sharing environment interaction data. Then, we utilize a privacy-preserving multi-party computation protocol to guar-antee that the data flows of the distributed computation scheme do not pose new privacy risks. Finally, we enforce differential privacy to preempt inference threats against the agents' training data-past environment interactions-when they take actions based on their neural network predictions. We implement PE-VDN in StarCraft Multi-Agent Competition (SMAC) and show that it achieves 80% of Vanilla VDN's win rate while maintaining differential privacy levels that provide meaningful privacy guarantees. The results demonstrate that PE-VDN can safeguard the confidentiality of agents' environment interaction data without sacrificing multi-agent coordination. 
    more » « less
    Free, publicly-accessible full text available December 13, 2024
  2. Stochastic matrices are commonly used to analyze Markov chains, but revealing them can leak sensitive information. Therefore, in this paper we introduce a technique to privatize stochastic matrices in a way that (i) conceals the probabilities they contain, and (ii) still allows for accurate analyses of Markov chains. Specifically, we use differential privacy, which is a statistical framework for protecting sensitive data. To implement it, we introduce the Matrix Dirichlet Mechanism, which is a probabilistic mapping that perturbs a stochastic matrix to provide privacy. We prove that this mechanism provides differential privacy, and we quantify the error induced in private stochastic matrices as a function of the strength of privacy being provided. We then bound the distance between the stationary distribution of the underlying, sensitive stochastic matrix and the stationary distribution of its privatized form. Numerical results show that, under typical conditions, privacy introduces error as low as 5.05% in the stationary distribution of a stochastic matrix. 
    more » « less
  3. null (Ed.)
    In decision-making problems, the actions of an agent may reveal sensitive information that drives its decisions. For instance, a corporation’s investment decisions may reveal its sensitive knowledge about market dynamics. To prevent this type of information leakage, we introduce a policy synthesis algorithm that protects the privacy of the transition probabilities in a Markov decision process. We use differential privacy as the mathematical definition of privacy. The algorithm first perturbs the transition probabilities using a mechanism that provides differential privacy. Then, based on the privatized transition probabilities, we synthesize a policy using dynamic programming. Our main contribution is to bound the "cost of privacy," i.e., the difference between the expected total rewards with privacy and the expected total rewards without privacy. We also show that computing the cost of privacy has time complexity that is polynomial in the parameters of the problem. Moreover, we establish that the cost of privacy increases with the strength of differential privacy protections, and we quantify this increase. Finally, numerical experiments on two example environments validate the established relationship between the cost of privacy and the strength of data privacy protections. 
    more » « less