Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings.more » « less
-
Park, Brian J. ; Deserno, Thomas M. (Ed.)
-
Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings.more » « less
-
Ever since the commercial offerings of the Cloud started appearing in 2006, the landscape of cloud computing has been undergoing remarkable changes with the emergence of many different types of service offerings, developer productivity enhancement tools, and new application classes as well as the manifestation of cloud functionality closer to the user at the edge. The notion of utility computing, however, has remained constant throughout its evolution, which means that cloud users always seek to save costs of leasing cloud resources while maximizing their use. On the other hand, cloud providers try to maximize their profits while assuring service-level objectives of the cloud-hosted applications and keeping operational costs low. All these outcomes require systematic and sound cloud engineering principles. The aim of this paper is to highlight the importance of cloud engineering, survey the landscape of best practices in cloud engineering and its evolution, discuss many of the existing cloud engineering advances, and identify both the inherent technical challenges and research opportunities for the future of cloud computing in general and cloud engineering in particular.more » « less
-
The supervisory control and data acquisition (SCADA) network in a smart grid requires to be reliable and efficient to transmit real-time data to the controller. Introducing SDN into a SCADA network helps in deploying novel grid control operations, as well as, their management. As the overall network cannot be transformed to have only SDN-enabled devices overnight because of budget constraints, a systematic deployment methodology is needed. In this work, we present a framework, named SDNSynth, that can design a hybrid network consisting of both legacy forwarding devices and programmable SDN-enabled switches. The design satisfies the resiliency requirements of the SCADA network, which are specified with respect to a set of identified threat vectors. The deployment plan primarily includes the best placements of the SDN-enabled switches. The plan may include one or more links to be installed newly. We model and implement the SDNSynth framework that includes the satisfaction of several requirements and constraints involved in the resilient operation of the SCADA. It uses satisfiability modulo theories (SMT) for encoding the synthesis model and solving it. We demonstrate SDNSynth on a case study and evaluate its performance on different synthetic SCADA systems.more » « less
-
Public transit is a critical component of a smart and connected community. As such, citizens expect and require accurate information about real-time arrival/departures of transportation assets. As transit agencies enable large-scale integration of real-time sensors and support back-end data-driven decision support systems, the dynamic data-driven applications systems (DDDAS) paradigm becomes a promising approach to make the system smarter by providing online model learning and multi-time scale analytics as part of the decision support system that is used in the DDDAS feedback loop. In this paper, we describe a system in use in Nashville and illustrate the analytic methods developed by our team. These methods use both historical as well as real-time streaming data for online bus arrival prediction. The historical data is used to build classifiers that enable us to create expected performance models as well as identify anomalies. These classifiers can be used to provide schedule adjustment feedback to the metro transit authority. We also show how these analytics services can be packaged into modular, distributed and resilient micro-services that can be deployed on both cloud back ends as well as edge computing resources.more » « less
-
An emerging trend in Internet of Things (IoT) applications is to move the computation (cyber) closer to the source of the data (physical). This paradigm is often referred to as edge computing. If edge resources are pooled together they can be used as decentralized shared resources for IoT applications, providing increased capacity to scale up computations and minimize end-to-end latency. Managing applications on these edge resources is hard, however, due to their remote, distributed, and (possibly) dynamic nature, which necessitates autonomous management mechanisms that facilitate application deployment, failure avoidance, failure management, and incremental updates. To address these needs, we present CHARIOT, which is orchestration middleware capable of autonomously managing IoT systems consisting of edge resources and applications. CHARIOT implements a three-layer architecture. The topmost layer comprises a system description language, the middle layer comprises a persistent data storage layer and the corresponding schema to store system information, and the bottom layer comprises a management engine that uses information stored persistently to formulate constraints that encode system properties and requirements, thereby enabling the use of Satisfiability Modulo Theories (SMT) solvers to compute optimal system (re)configurations dynamically at runtime. This paper describes the structure and functionality of CHARIOT and evaluates its efficacy as the basis for a smart parking system case study that uses sensors to manage parking spacesmore » « less
-
This article presents an overview of the collaborative Transit Hub project between Vanderbilt University, the Nashville Metropolitan Transit Authority (MTA) and Siemens, Corporate Technology. This project commenced as part of the NIST Global Cities Team Challenge (GCTC). The goal of this project is to leverage technology effectively to improve public engagement with transit operations and increase the overall efficiency of the system. In the process we want to identify key technical challenges that will require new research to advance the state of the art.more » « less