Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. The formation of molecular gas in interstellar clouds is a slow process, but can be enhanced by gas compression. Magneto-hydrodynamic (MHD) waves can create compressed quasi-periodic linear structures, referred to as striations. Striations are observed at the column densities at which the transition from atomic to molecular gas takes place. Aims. We explore the role of MHD waves in the CO chemistry in regions with striations within molecular clouds. Methods. We targeted a region with striations in the Polaris Flare cloud. We conducted a CO J = 2−1 survey in order to probe the molecular gas properties. We used archival starlight polarization data and dust emission maps in order to probe the magnetic field properties and compare against the CO morphological and kinematic properties. We assessed the interaction of compressible MHD wave modes with CO chemistry by comparing their characteristic timescales. Results. The estimated magnetic field is 38–76 µG. In the CO integrated intensity map, we observe a dominant quasiperiodic intensity structure that tends to be parallel to the magnetic field orientation and has a wavelength of approximately one parsec. The periodicity axis is ~17° off from the mean magnetic field orientation and is also observed in the dust intensity map. The contrast in the CO integrated intensity map is ~2.4 times higher than the contrast of the column density map, indicating that CO formation is enhanced locally. We suggest that a dominant slow magnetosonic mode with an estimated period of 2.1–3.4 Myr and a propagation speed of 0.30–0.45 km s −1 is likely to have enhanced the formation of CO, hence created the observed periodic pattern. We also suggest that within uncertainties, a fast magnetosonic mode with a period of 0.48 Myr and a velocity of 2.0 km s −1 could have played some role in increasing the CO abundance. Conclusions. Quasiperiodic CO structures observed in striation regions may be the imprint of MHD wave modes. The Alfvénic speed sets the dynamical timescales of the compressible MHD modes and determines which wave modes are involved in the CO chemistry.more » « less
-
ABSTRACT We have investigated the physical properties of Planck Galactic Cold Clumps (PGCCs) located in the Galactic Plane, using the JCMT Plane Survey (JPS) and the SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE) survey. By utilizing a suite of molecular-line surveys, velocities, and distances were assigned to the compact sources within the PGCCs, placing them in a Galactic context. The properties of these compact sources show no large-scale variations with Galactic environment. Investigating the star-forming content of the sample, we find that the luminosity-to-mass ratio (L/M) is an order of magnitude lower than in other Galactic studies, indicating that these objects are hosting lower levels of star formation. Finally, by comparing ATLASGAL sources that are associated or are not associated with PGCCs, we find that those associated with PGCCs are typically colder, denser, and have a lower L/M ratio, hinting that PGCCs are a distinct population of Galactic Plane sources.
-
null (Ed.)Context. Ionized interstellar gas is an important component of the interstellar medium and its lifecycle. The recent evidence for a widely distributed highly ionized warm interstellar gas with a density intermediate between the warm ionized medium (WIM) and compact H II regions suggests that there is a major gap in our understanding of the interstellar gas. Aims. Our goal is to investigate the properties of the dense WIM in the Milky Way using spectrally resolved SOFIA GREAT [N II ] 205 μm fine-structure lines and Green Bank Telescope hydrogen radio recombination lines (RRL) data, supplemented by spectrally unresolved Herschel PACS [N II ] 122μm data, and spectrally resolved 12 CO. Methods. We observed eight lines of sight (LOS) in the 20° < l < 30° region in the Galactic plane. We analyzed spectrally resolved lines of [N II ] at 205 μm and RRL observations, along with the spectrally unresolved Herschel PACS 122 μm emission, using excitation and radiative transfer models to determine the physical parameters of the dense WIM. We derived the kinetic temperature, as well as the thermal and turbulent velocity dispersions from the [N II ] and RRL linewidths. Results. The regions with [N II ] 205 μm emission are characterized by electron densities, n ( e ) ~ 10−35 cm −3 , temperatures range from 3400 to 8500 K, and nitrogen column densities N(N + ) ~ 7 × 10 16 to 3 × 10 17 cm −2 . The ionized hydrogen column densities range from 6 × 10 20 to 1.7 × 10 21 cm −2 and the fractional nitrogen ion abundance x (N + ) ~ 1.1 × 10 −4 to 3.0 × 10 −4 , implying an enhanced nitrogen abundance at a distance ~4.3 kpc from the Galactic Center. The [N II ] 205 μm emission lines coincide with CO emission, although often with an offset in velocity, which suggests that the dense warm ionized gas is located in, or near, star-forming regions, which themselves are associated with molecular gas. Conclusions. These dense ionized regions are found to contribute ≳50% of the observed [C II ] intensity along these LOS. The kinetic temperatures we derive are too low to explain the presence of N + resulting from electron collisional ionization and/or proton charge transfer of atomic nitrogen. Rather, these regions most likely are ionized by extreme ultraviolet (EUV) radiation from nearby star-forming regions or as a result of EUV leakage through a clumpy and porous interstellar medium.more » « less
-
ABSTRACT The current generation of (sub)mm-telescopes has allowed molecular line emission to become a major tool for studying the physical, kinematic, and chemical properties of extragalactic systems, yet exploiting these observations requires a detailed understanding of where emission lines originate within the Milky Way. In this paper, we present 60 arcsec (∼3 pc) resolution observations of many 3 mm band molecular lines across a large map of the W49 massive star-forming region (∼100 pc × 100 pc at 11 kpc), which were taken as part of the ‘LEGO’ IRAM-30m large project. We find that the spatial extent or brightness of the molecular line transitions are not well correlated with their critical densities, highlighting abundance and optical depth must be considered when estimating line emission characteristics. We explore how the total emission and emission efficiency (i.e. line brightness per H2 column density) of the line emission vary as a function of molecular hydrogen column density and dust temperature. We find that there is not a single region of this parameter space responsible for the brightest and most efficiently emitting gas for all species. For example, we find that the HCN transition shows high emission efficiency at high column density (1022 cm−2) and moderate temperatures (35 K), whilst e.g. N2H+ emits most efficiently towards lower temperatures (1022 cm−2; <20 K). We determine $X_{\mathrm{CO} (1-0)} \sim 0.3 \times 10^{20} \, \mathrm{cm^{-2}\, (K\, km\, s^{-1})^{-1}}$, and $\alpha _{\mathrm{HCN} (1-0)} \sim 30\, \mathrm{M_\odot \, (K\, km\, s^{-1}\, pc^2)^{-1}}$, which both differ significantly from the commonly adopted values. In all, these results suggest caution should be taken when interpreting molecular line emission.more » « less