skip to main content


Search for: All records

Creators/Authors contains: "Gomez-Maldonado, Diego"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Cellulose nanomaterial (CNM) and polyethylenimine (PEI) composites have attracted growing attention due to their multifunctional characteristics, which have been applied in different fields. In this work, soybean hulls were valorized into carboxyl cellulose nanofibrils (COOH-CNFs), and composited into hydrogels with PEI by combining them with cationic chelating and physical adsorption strategies. Cellulose nanofibrils (CNFs) were produced from soybean hulls prior to oxidation by a TEMPO mediated reaction to obtain COOH–CNFs; then drops of zinc chloride were added to 1.5% aqueous COOH–CNF dispersions, which were left for 24 h to form COOH-CNF hydrogels. Finally, the hydrogels were functionalized using different concentration of PEI solutions over a range of pH values. Elemental analysis results showed that 20% aq. PEI at pH 11.6 is the optimum condition to synthesize the COOH–CNF/PEI hydrogels. Additionally, the adsorption efficiency for the removal of anionic methyl blue dyes and Cu(II) ions from water was tested, reaching 82.6% and 69.8%, respectively, after 24 h. These results demonstrate the great potential of COOH–CNF/PEI hydrogels as adsorbent materials for water remediation.

    Graphical abstract

     
    more » « less
  2. Enhancing the delivery efficiency of NPK fertilizers benefits both crops and the environment through moderating the supplied dosage of nutrients in the soil, avoiding side reactions, maximizing absorption by the plant, and minimizing leaching and runoff. Bio-based materials such as cellulose are ideal scaffolds for nutrient delivery due to their inherent biocompatibility, biodegradability, and significant water uptake. In this work, nanocellulose-based hydrogels were regenerated from mixed softwood in acidic media and loaded with NPK by immersion in varied concentrations of an NPK-rich fertilizer solution. High loading of NPK was achieved within the hydrogel, but immersion in the matrix provided only slight slowing of nutrient release compared to rapid solubility of conventional formulations. Densification, crosslinking, and coating of the hydrogels with beeswax were ineffective strategies to further slow NPK release. Following these results, both gas and solution-phase esterification reactions of the cellulosic matrix with hexanoyl chloride were performed after NPK loading to introduce a hydrophobic surface layer. While solution-phase modification led to phosphorus leaching and was overall ineffective in altering nutrient release, the gas-phase modification slowed the release of P and K by more than an order of magnitude. Moreover, it was found that varying both the properties of the hydrophobic surface layer and the nutrient loading provide a means to tune release rates. Overall, this work demonstrates the potential of nanocellulose-based hydrogels to be used as an environmentally safe and sustainable vehicle for the controlled release of nutrients in agricultural applications. 
    more » « less
  3. Nano-porous aerogels are an advantageous approach to produce low-density materials with high surface area, particularly when using biobased materials. Frequently, most biobased aerogels are synthesized through a bottom-up approach, which requires high energy inputs to break and rebuild the raw materials, and for elimination of water. To curb this, this work focused on generating aerogels by a top-down approach through the delignification of a wood substrate while eliminating water by solvent exchange. To diversify the surface chemistry for use in water treatment, the delignified wood–nanowood-was coated with a chitosan–cyclodextrin co-polymer and tested in the capture of microcystin-LR. The generated nanowood structure had 75% porosity after coating, with up to 339% water swelling and an adsorption capacity of 0.12 mg g −1 of the microcystin. This top-down technique enables the generation of low-cost aerogels by reducing steps, using a biobased self-assembled coating with hydrophobic active sites, and avoiding costly energetic input. 
    more » « less