- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Gong, Xiaohui (2)
-
Pan, Yize (2)
-
Buscarnera, Giuseppe (1)
-
Rivers, Mark (1)
-
Rotta Loria, Alessandro F. (1)
-
Rotta_Loria, Alessandro F (1)
-
Seo, Dawa (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pan, Yize; Gong, Xiaohui; Rotta Loria, Alessandro F. (, Scientific Reports)Abstract Granular materials with irregular particle shapes undergo a myriad of temperature variations in natural and engineered systems. However, the impacts of cyclic temperature variations on the mechanics of granular materials remain poorly understood. Specifically, little is known about the response of granular materials to cyclic temperature variations as a function of the following central variables: particle shape, applied stress level, relative density, and temperature amplitude. This paper presents advanced laboratory experiments to explore the impacts of cyclic temperature variations on the mechanics of granular materials, with a focus on sands. The results show that cyclic temperature variations applied to sands induce thermal shakedown: the accumulation of irreversible bulk deformations due to microstructural rearrangements caused by thermal expansions and contractions of the constituting particles. The deformation of sands caused by thermal shakedown strongly depends on particle shape, stress level, relative density, and temperature amplitude. This deformation is limited for individual thermal cycles but accumulates and becomes significant for multiple thermal cycles, leading to substantial compaction in sands and other granular materials, which can affect various natural and engineered systems.more » « less
An official website of the United States government
