skip to main content


Search for: All records

Creators/Authors contains: "Gong, Xinyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    The interactions between uranium and non‐innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium‐based metal–organic frameworks (MOFs) offer a new angle to study these interactions, as these self‐assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non‐innocent linkers. We report the synthesis of the MOFNU‐1700, assembled from U4+‐paddlewheel nodes and catecholate‐based linkers. We propose this highly unusual structure, which contains two U4+ions in a paddlewheel built from four linkers—a first among uranium materials—as a result of extensive characterization via powder X‐ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.

     
    more » « less
  3. Abstract

    The interactions between uranium and non‐innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium‐based metal–organic frameworks (MOFs) offer a new angle to study these interactions, as these self‐assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non‐innocent linkers. We report the synthesis of the MOFNU‐1700, assembled from U4+‐paddlewheel nodes and catecholate‐based linkers. We propose this highly unusual structure, which contains two U4+ions in a paddlewheel built from four linkers—a first among uranium materials—as a result of extensive characterization via powder X‐ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.

     
    more » « less
  4. Abstract

    Polyethylene terephthalate (PET) is utilized as one of the most popular consumer plastics worldwide, but difficulties associated with recycling PET have generated a severe environmental crisis with most PET ending its lifecycle in landfills. We report that zirconium‐based metal–organic framework (Zr‐MOF) UiO‐66 deconstructs waste PET into the building blocks terephthalic acid (TA) and mono‐methyl terephthalate (MMT) within 24 hours at 260 °C (total yield of 98 % under 1 atm H2and 81 % under 1 atm Ar). Extensive structural characterization studies reveal that during the degradation process, UiO‐66 undergoes an intriguing transformation into MIL‐140A, which is another Zr‐MOF that shows good catalytic activity toward PET degradation under similar reaction conditions. These results illustrate the diversity of applications for Zr‐MOFs and establish MOFs as a new class of polymer degradation catalysts with the potential to address long‐standing challenges associated with plastic waste.

     
    more » « less
  5. Abstract

    Polyethylene terephthalate (PET) is utilized as one of the most popular consumer plastics worldwide, but difficulties associated with recycling PET have generated a severe environmental crisis with most PET ending its lifecycle in landfills. We report that zirconium‐based metal–organic framework (Zr‐MOF) UiO‐66 deconstructs waste PET into the building blocks terephthalic acid (TA) and mono‐methyl terephthalate (MMT) within 24 hours at 260 °C (total yield of 98 % under 1 atm H2and 81 % under 1 atm Ar). Extensive structural characterization studies reveal that during the degradation process, UiO‐66 undergoes an intriguing transformation into MIL‐140A, which is another Zr‐MOF that shows good catalytic activity toward PET degradation under similar reaction conditions. These results illustrate the diversity of applications for Zr‐MOFs and establish MOFs as a new class of polymer degradation catalysts with the potential to address long‐standing challenges associated with plastic waste.

     
    more » « less