- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Benjamín-Rivera, Josué A (1)
-
Cardona-Rivera, Andrés E (1)
-
Carrasquillo_Rivera, Marielie (1)
-
Catala-Torres, José F (1)
-
Cintrón Cruz, Juan A. (1)
-
Cordero-Virella, Nicolle A (1)
-
Cruz-Maldonado, Paola M (1)
-
De_Jesus-Soto, Michael G (1)
-
Dones-Lassalle, Christian Y (1)
-
Gaur, Kavita (1)
-
González Espiet, Jean C. (1)
-
González-Espiet, Jean C (1)
-
González-Pagan, Patricia (1)
-
Hernández-Ríos, Raul (1)
-
Loza-Rosas, Sergio A (1)
-
Pabón-Colon, Héctor L (1)
-
Pazol, Jessika (1)
-
Piñero Cruz, Dalice M. (1)
-
Pérez-Ríos, Jobaniel D (1)
-
Rodríguez, Israel (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The title compound, C 7 H 3 F 5 INS, a pentafluorosulfanyl (SF 5 ) containing arene, was synthesized from 4-(pentafluorosulfanyl)benzonitrile and lithium tetramethylpiperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF 5 intermediates that have not been demonstrated using previous methods. The molecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the pentafluorosulfanyl substituent in the plane of the molecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The pentafluorosulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the pentafluorosulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the molecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H...F and N...I interactions as well as out-of-plane F...C interactions are observed. According to the Hirshfeld analysis, the principal intermolecular contacts for the title compound are F...H (29.4%), F...I (15.8%), F...N (11.4%), F...F (6.0%), N...I (5.6%) and F...C (4.5%).more » « less
-
Benjamín-Rivera, Josué A; Cardona-Rivera, Andrés E; Vázquez-Maldonado, Ángel L; Dones-Lassalle, Christian Y; Pabón-Colon, Héctor L; Rodríguez-Rivera, Héctor M; Rodríguez, Israel; González-Espiet, Jean C; Pazol, Jessika; Pérez-Ríos, Jobaniel D; et al (, Inorganics)Serum transferrin (sTf) plays a pivotal role in regulating iron biodistribution and homeostasis within the body. The molecular details of sTf Fe(III) binding blood transport, and cellular delivery through transferrin receptor-mediated endocytosis are generally well-understood. Emerging interest exists in exploring sTf complexation of nonferric metals as it facilitates the therapeutic potential and toxicity of several of them. This review explores recent X-ray structural and physiologically relevant metal speciation studies to understand how sTf partakes in the bioactivity of key non-redox active hard Lewis acidic metals. It challenges preconceived notions of sTf structure function correlations that were based exclusively on the Fe(III) model by revealing distinct coordination modalities that nonferric metal ions can adopt and different modes of binding to metal-free and Fe(III)-bound sTf that can directly influence how they enter into cells and, ultimately, how they may impact human health. This knowledge informs on biomedical strategies to engineer sTf as a delivery vehicle for metal-based diagnostic and therapeutic agents in the cancer field. It is the intention of this work to open new avenues for characterizing the functionality and medical utility of nonferric-bound sTf and to expand the significance of this protein in the context of bioinorganic chemistry.more » « less
An official website of the United States government
