skip to main content

Search for: All records

Creators/Authors contains: "Gonzalez Renteria, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. A bstract A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton–proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb − 1 . The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson’s mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.
    Free, publicly-accessible full text available July 1, 2024
  4. A bstract A search for Higgs boson pair production in events with two b -jets and two τ -leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb − 1 collected at $$ \sqrt{s} $$ s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ -lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3 . 1 σ (2 . 0 σ ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.
    Free, publicly-accessible full text available July 1, 2024
  5. A bstract A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron–muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb − 1 at $$ \sqrt{s} $$ s = 7 TeV and about 20 fb − 1 at $$ \sqrt{s} $$ s = 8 TeV for each experiment. The combined cross-sections are determined to be 178 . 5 ± 4 . 7 pb at $$ \sqrt{s} $$ s = 7 TeV and $$ {243.3}_{-5.9}^{+6.0} $$ 243.3 − 5.9 + 6.0 pb at $$ \sqrt{s} $$ s = 8 TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be R 8 / 7 = 1 . 363 ± 0 . 032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118)more »and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $$ {m}_t^{\textrm{pole}}={173.4}_{-2.0}^{+1.8} $$ m t pole = 173.4 − 2.0 + 1.8 GeV and $$ {\alpha}_{\textrm{s}}\left({m}_Z\right)={0.1170}_{-0.0018}^{+0.0021} $$ α s m Z = 0.1170 − 0.0018 + 0.0021 .« less
    Free, publicly-accessible full text available July 1, 2024
  6. A bstract A direct search for Higgs bosons produced via vector-boson fusion and subsequently decaying into invisible particles is reported. The analysis uses 139 fb − 1 of pp collision data at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV recorded by the ATLAS detector at the LHC. The observed numbers of events are found to be in agreement with the background expectation from Standard Model processes. For a scalar Higgs boson with a mass of 125 GeV and a Standard Model production cross section, an observed upper limit of 0 . 145 is placed on the branching fraction of its decay into invisible particles at 95% confidence level, with an expected limit of 0 . 103. These results are interpreted in the context of models where the Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross section of weakly interacting massive particles and nucleons. Invisible decays of additional scalar bosons with masses from 50 GeV to 2 TeV are also studied, and the derived upper limits on the cross section times branching fraction decrease with increasing mass from 1 . 0 pb for a scalar boson mass ofmore »50 GeV to 0 . 1 pb at a mass of 2 TeV.« less
  7. A bstract Measurements of the production cross-sections of the Standard Model (SM) Higgs boson ( H ) decaying into a pair of τ -leptons are presented. The measurements use data collected with the ATLAS detector from pp collisions produced at the Large Hadron Collider at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 139 fb − 1 . Leptonic ( τ → ℓν ℓ ν τ ) and hadronic ( τ → hadrons ν τ ) decays of the τ -lepton are considered. All measurements account for the branching ratio of H → ττ and are performed with a requirement |y H | < 2 . 5, where y H is the true Higgs boson rapidity. The cross-section of the pp → H → ττ process is measured to be 2 . 94 ± $$ 0.21{\left(\mathrm{stat}\right)}_{-0.32}^{+0.37} $$ 0.21 stat − 0.32 + 0.37 (syst) pb, in agreement with the SM prediction of 3 . 17 ± 0 . 09 pb. Inclusive cross-sections are determined separately for the four dominant production modes: 2 . 65 ± $$ 0.41{\left(\mathrm{stat}\right)}_{-0.67}^{+0.91} $$ 0.41 stat − 0.67 + 0.91 (syst) pb for gluon-gluon fusion, 0 .more »197 ± $$ 0.028{\left(\mathrm{stat}\right)}_{-0.026}^{+0.032} $$ 0.028 stat − 0.026 + 0.032 (syst) pb for vector-boson fusion, 0 . 115 ± $$ 0.058{\left(\mathrm{stat}\right)}_{-0.040}^{+0.042} $$ 0.058 stat − 0.040 + 0.042 (syst) pb for vector-boson associated production, and 0 . 033 ± $$ 0.031{\left(\mathrm{stat}\right)}_{-0.017}^{+0.022} $$ 0.031 stat − 0.017 + 0.022 (syst) pb for top-quark pair associated production. Measurements in exclusive regions of the phase space, using the simplified template cross-section framework, are also performed. All results are in agreement with the SM predictions.« less
  8. Abstract A search for long-lived charginos produced either directly or in the cascade decay of heavy prompt gluino states is presented. The search is based on proton–proton collision data collected at a centre-of-mass energy of $$\sqrt{s}$$ s  = 13 T $$\text {eV}$$ eV between 2015 and 2018 with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 136 fb $$^{-1}$$ - 1 . Long-lived charginos are characterised by a distinct signature of a short and then disappearing track, and are reconstructed using at least four measurements in the ATLAS pixel detector, with no subsequent measurements in the silicon-microstrip tracking volume nor any associated energy deposits in the calorimeter. The final state is complemented by a large missing transverse-momentum requirement for triggering purposes and at least one high-transverse-momentum jet. No excess above the expected backgrounds is observed. Exclusion limits are set at 95% confidence level on the masses of the chargino and gluino for different chargino lifetimes. Chargino masses up to 660 (210) G $$\text {eV}$$ eV are excluded in scenarios where the chargino is a pure wino (higgsino). For charginos produced during the cascade decay of a heavy gluino, gluinos with masses below 2.1 T $$\text {eV}$$ eV are excluded for a charginomore »mass of 300 G $$\text {eV}$$ eV and a lifetime of 0.2 ns.« less