skip to main content

Search for: All records

Creators/Authors contains: "Gonzalez, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Revealing the formation, dynamics, and contribution to plasma heating of magnetic field fluctuations in the solar wind is an important task for heliospheric physics and for a general plasma turbulence theory. Spacecraft observations in the solar wind are limited to spatially localized measurements, so that the evolution of fluctuation properties with solar wind propagation is mostly studied via statistical analyses of data sets collected by different spacecraft at various radial distances from the Sun. In this study we investigate the evolution of turbulence in the Earth’s magnetosheath, a plasma system sharing many properties with the solar wind. The near-Earth space environment is being explored by multiple spacecraft missions, which may allow us to trace the evolution of magnetosheath fluctuations with simultaneous measurements at different distances from their origin, the Earth’s bow shock. We compare ARTEMIS and Magnetospheric Multiscale (MMS) Mission measurements in the Earth magnetosheath and Parker Solar Probe measurements of the solar wind at different radial distances. The comparison is supported by three numerical simulations of the magnetosheath magnetic and plasma fluctuations: global hybrid simulation resolving ion kinetic and including effects of Earth’s dipole field and realistic bow shock, hybrid and Hall-MHD simulations in expanding boxes that mimicmore »the magnetosheath volume expansion with the radial distance from the dayside bow shock. The comparison shows that the magnetosheath can be considered as a miniaturized version of the solar wind system with much stronger plasma thermal anisotropy and an almost equal amount of forward and backward propagating Alfvén waves. Thus, many processes, such as turbulence development and kinetic instability contributions to plasma heating, occurring on slow timescales and over large distances in the solar wind, occur more rapidly in the magnetosheath and can be investigated in detail by multiple near-Earth spacecraft.

    « less
  2. Abstract—Virtual Network Functions (VNFs) are software implementation of middleboxes (MBs) (e.g., firewalls and proxy servers) that provide performance and security guarantees for virtual machine (VM) cloud applications. In this paper, we study a new VM flow migration problem for dynamic VNF-enabled cloud data centers (VDCs). The goal is to migrate the VM flows in the dynamic VDCs to minimize the total network traffic while load-balancing VNFs with limited processing capabilities. We refer to the problem as FMDV: flow migration in dynamic VDCs. We propose an optimal and efficient minimum cost flow-based flow migration algorithm and two benefit-based efficient heuristic algorithms to solve the FMDV. Via extensive simulations, we show that our algorithms are effective in mitigating dynamic cloud traffic while achieving load balance among VNFs. In particular, all our algorithms reduce dynamic network traffic in all cases and our optimal algorithm always achieves the best traffic-mitigation effect, reducing the network traffic by up to 28% compared to the case without flow migration.
    Free, publicly-accessible full text available May 1, 2023
  3. A. Weinberger ; W. Chen ; D.Hernández-Leo ; D., B. Chen (Ed.)
    Scientific argumentation and modeling are both core practices in learning and doing science. However, they are challenging for students. Although there is considerable literature about scientific argumentation or modeling practice in K-12 science, there are limited studies on how engaging students in modeling and scientific argumentation might be mutually supportive. This study aims to explore how 5th graders can be supported by our designed mediators as they engage in argumentation and modeling, in particular, model revision. We implemented a virtual afterschool science club to examine how our modeling tool – MEME (Model and Evidence Mapping Environment), provided evidence, peer comments, and other mediators influenced students in learning about aquatic ecosystems through developing a model. While both groups that we examined constructed strong arguments and developed good models, we show how the mediators played different roles in helping them be successful.
    Free, publicly-accessible full text available July 1, 2023
  4. Hagfishes are an ancient group of benthic marine craniates that are found in deep or cold waters around the world. Among the 83 valid species, four are described from the Galapagos Islands: Eptatretus bobwisneri, E. grouseri, E. mccoskeri and Rubicundus lakeside. During a recent expedition to the archipelago, six species of hagfishes were collected, including four undescribed species of the genera Eptatretus (Eptatretus goslinei sp. nov.) and Myxine (Myxine greggi sp. nov., M. martinii sp. nov. and M. phantasma sp. nov.). In this paper, we provide a review of the eight species of hagfishes from the Galapagos Islands, including new diagnoses and an identification key for all species. Myxine phantasma is remarkable in that it is the only species of Myxine known to completely lack melaninbased pigments. Our species delineations were based on both morphological and molecular analyses. A phylogenetic hypothesis based on molecular data suggests that Galapagos hagfishes arose from multiple independent colonisations of the islands from as many as five different ancestral lineages. The large number of endemic hagfishes in the geologically young Galapagos Islands suggests that there is much global hagfish diversity yet to be discovered.
  5. Hagfishes are an ancient group of benthic marine craniates that are found in deep or cold waters around the world. Among the 83 valid species, four are described from the Galapagos Islands: Eptatretus bobwisneri, E. grouseri, E. mccoskeri and Rubicundus lakeside. During a recent expedition to the archipelago, six species of hagfishes were collected, including four undescribed species of the genera Eptatretus (Eptatretus goslinei sp. nov.) and Myxine (Myxine greggi sp. nov., M. martinii sp. nov. and M. phantasma sp. nov.). In this paper, we provide a review of the eight species of hagfishes from the Galapagos Islands, including new diagnoses and an identification key for all species. Myxine phantasma is remarkable in that it is the only species of Myxine known to completely lack melanin-based pigments. Our species delineations were based on both morphological and molecular analyses. A phylogenetic hypothesis based on molecular data suggests that Galapagos hagfishes arose from multiple independent colonisations of the islands from as many as five different ancestral lineages. The large number of endemic hagfishes in the geologically young Galapagos Islands suggests that there is much global hagfish diversity yet to be discovered.