skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goodge, Berit H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Charge order pervades the phase diagrams of quantum materials where it competes with superconducting and magnetic phases, hosts electronic phase transitions and topological defects, and couples to the lattice generating intricate structural distortions. Incommensurate charge order is readily stabilized in manganese oxides, where it is associated with anomalous electronic and magnetic properties, but its nanoscale structural inhomogeneity complicates precise characterization and understanding of its relationship with competing phases. Leveraging atomic-resolution variable-temperature cryogenic scanning transmission electron microscopy, we characterize the thermal evolution of charge order as it transforms from its ground state in a model manganite system. We find that mobile networks of discommensurations and dislocations generate phase inhomogeneity and induce global incommensurability in an otherwise lattice-locked modulation. Driving the order to melt at high temperatures, the discommensuration density grows, and regions of order locally decouple from the lattice periodicity. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Free, publicly-accessible full text available February 27, 2026
  4. We examine the bulk electronic structure of Nd 3 Ni 2 O 7 using Ni 2 p core-level hard x-ray photoemission spectroscopy combined with density functional theory + dynamical mean-field theory. Our results reveal a large deviation of the Ni 3 d occupation from the formal Ni 2.5 + valency, highlighting the importance of the charge transfer from oxygen ligands. We find that the dominant d 8 configuration is accompanied by nearly equal contributions from d 7 and d 9 states, exhibiting an unusual valence state among Ni-based oxides. Finally, we discuss the Ni d x 2 y 2 and d z 2 orbital-dependent hybridization, correlation and local spin dynamics. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. A central problem in modern condensed matter physics is the understanding of materials with strong electron correlations. Despite extensive work, the essential physics of many of these systems is not understood and there is very little ability to make predictions in this class of materials. In this manuscript we share our personal views on the major open problems in the field of correlated electron systems. We discuss some possible routes to make progress in this rich and fascinating field. This manuscript is the result of the vigorous discussions and deliberations that took place at Johns Hopkins University during a three-day workshop January 27, 28, and 29, 2020 that brought together six senior scientists and 46 more junior scientists. Our hope, is that the topics we have presented will provide inspiration for others working in this field and motivation for the idea that significant progress can be made on very hard problems if we focus our collective energies. 
    more » « less
    Free, publicly-accessible full text available June 25, 2026
  6. Abstract A key open question in the study of layered superconducting nickelate films is the role that hydrogen incorporation into the lattice plays in the appearance of the superconducting state. Due to the challenges of stabilizing highly crystalline square planar nickelate films, films are prepared by the deposition of a more stable parent compound which is then transformed into the target phaseviaa topotactic reaction with a strongly reducing agent such as CaH2. Recent studies, both experimental and theoretical, have introduced the possibility that the incorporation of hydrogen from the reducing agent into the nickelate lattice may be critical for the superconductivity. In this work, we use secondary ion mass spectrometry to examine superconducting La1−xXxNiO2/ SrTiO3(X= Ca and Sr) and Nd6Ni5O12/ NdGaO3films, along with non-superconducting NdNiO2/ SrTiO3and (Nd,Sr)NiO2/ SrTiO3. We find no evidence for extensive hydrogen incorporation across a broad range of samples, including both superconducting and non-superconducting films. Theoretical calculations indicate that hydrogen incorporation is broadly energetically unfavorable in these systems, supporting our conclusion that extensive hydrogen incorporation is not generally required to achieve a superconducting state in layered square-planar nickelates. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025