- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Abdollah, Sepideh (2)
-
Cadman, Logan (2)
-
Fitzgerald, Jack (2)
-
Gopinath, Anju (2)
-
Partridge, Craig (2)
-
Shannigrahi, Susmit (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Inspired by prior work suggesting undetected errors were becoming a problem on the Internet, we set out to create a measurement system to detect errors that the TCP checksum missed. We designed a client-server framework in which the servers sent known files to clients. We then compared the received data with the original file to identify undetected errors introduced by the network. We deployed this measurement framework on various public testbeds. Over the course of 9 months, we transferred a total of 26 petabytes of data. Scaling the measurement framework to capture a large number of errors proved to be a challenge. This paper focuses on the challenges encountered during the deployment of the measurement system. We also present the interim results, which suggest that the error problems seen in prior works may be caused by two distinct processes: (1) errors that slip past TCP and (2) file system failures. The interim results also suggest that the measurement system needs to be adjusted to collect exabytes of measurement data, rather than the petabytes that prior studies predicted.more » « lessFree, publicly-accessible full text available May 15, 2026
-
Fitzgerald, Jack; Gopinath, Anju; Cadman, Logan; Abdollah, Sepideh; Shannigrahi, Susmit; Partridge, Craig (, IEEE)Inspired by earlier findings that undetected errors were increasing on the Internet, we built a measurement system to detect errors that the TCP checksum fails to catch. We created a client–server framework in which servers sent known files to clients, and the received data was compared to the originals to identify undetected network-introduced errors. The system was deployed on several public testbeds. Over nine months, we transferred 26 petabytes of data. Scaling the system to capture many errors proved difficult. This paper describes the deployment challenges and presents interim results showing that prior error reports may come from two different sources: errors that bypass TCP and file system failures. The results also suggest that the system must collect data at the exabyte scale rather than the petabyte scale expected by earlier studies.more » « lessFree, publicly-accessible full text available May 12, 2026
An official website of the United States government
