Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SimulaTE is studying teaching simulations as formative assessments of pre-service teachers’ (PST) practice of eliciting and interpreting students’ mathematical thinking. Preparation and protocols that promote reliability and validity of the simulations as formative assessments will enhance their effectiveness and generalizability. Teacher educators who use the simulations document each PST’s performance to generate feedback for the PST in nine categories, arising from a decomposition of the teaching practice into specific component skills or actions. A series of coordinated validation studies include research to determine if the nine categories are distinguishable through the use of the simulation assessments, and can benefit from attention beyond other experiences PSTs have in their teacher preparation programsmore » « less
-
Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper 1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front. We argue that this spatial pattern reflects a temporal state shift in the deep Critical Zone. Chemical weathering at depth, surface particulate deposition, and tectonic forcing drive landscapes away from an initial state with minimal topographic dissection, large vertical hydraulic conductivity, abundant lakes, and muted hydrographs toward a state of deep fluvial dissection, small vertical hydraulic conductivity, few lakes, and flashy hydrographs. This state shift has major implications for regional water resources. Drill hole temperature profiles imply at least km of active groundwater currently stored at the Cascade Range crest, with discharge variability a strong function of bedrock age. Deeply circulating groundwater also impacts volcanism, and Holocene High Cascades eruptions reflect explosive magma–water interactions that increase regional volcanic hazard potential. We propose that a Critical Zone state shift drives volcanic landscape evolution in wet climates and represents a framework for understanding interconnected solid earth dynamics and climate in these terrains.more » « lessFree, publicly-accessible full text available January 21, 2026
-
SimulaTE is studying teaching simulations as formative assessments of pre-service teachers’ (PST) practice of eliciting and interpreting students’ mathematical thinking. Preparation and protocols that promote reliability and validity of the simulations as formative assessments will enhance their effectiveness and generalizability. Teacher educators who use the simulations document each PST’s performance to generate relevant feedback for the PST. As part of a coordinated set of validity studies, six researchers were prepared on the documentation protocol. Consistency of documentation within the group and with the simulation developers’ judgments provided evidence supporting reliability and validity of the documentation protocol.more » « less
-
Abstract An open question in the study of climate prediction is whether internal variability will continue to contribute to prediction skill in the coming decades, or whether predictable signals will be overwhelmed by rising temperatures driven by anthropogenic forcing. We design a neural network that is interpretable such that its predictions can be decomposed to examine the relative contributions of external forcing and internal variability to future regional sea surface temperature (SST) trend predictions in the near-term climate (2020–2050). We show that there is additional prediction skill to be garnered from internal variability in the Community Earth System Model version 2 Large Ensemble, even in a relatively high forcing future scenario. This predictability is especially apparent in the North Atlantic, North Pacific and Tropical Pacific Oceans as well as in the Southern Ocean. We further investigate how prediction skill covaries across the ocean and find three regions with distinct coherent prediction skill driven by internal variability. SST trend predictability is found to be associated with consistent patterns of decadal variability for the grid points within each region.more » « less
-
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nano-fabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nm-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously: Namely, interfacial chemical reactions are frequently driven by “anomalies” or “non-idealities”, such as defects, nanoconfinement, and other non-typical chemical structures. Third, progress in computational chemistry have yielded new insights that allow a move beyond simple schematics leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges, as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.more » « less
An official website of the United States government

Full Text Available