skip to main content

Search for: All records

Creators/Authors contains: "Gordon, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Odor stimuli consist of thousands of possible molecules, each molecule with many different properties, each property a dimension of the stimulus. Processing these high dimensional stimuli would appear to require many stages in the brain to reach odor perception, yet, in mammals, after the sensory receptors this is accomplished through only two regions, the olfactory bulb and olfactory cortex. We take a first step toward a fundamental understanding by identifying the sequence of local operations carried out by microcircuits in the pathway. Parallel research provided strong evidence that processed odor information is spatial representations of odor molecules that constitute odormore »images in the olfactory bulb and odor objects in olfactory cortex. Paleontology provides a unique advantage with evolutionary insights providing evidence that the basic architecture of the olfactory pathway almost from the start ∼330 million years ago (mya) has included an overwhelming input from olfactory sensory neurons combined with a large olfactory bulb and olfactory cortex to process that input, driven by olfactory receptor gene duplications. We identify a sequence of over 20 microcircuits that are involved, and expand on results of research on several microcircuits that give the best insights thus far into the nature of the high dimensional processing.« less
  2. Elgar, Mark A. (Ed.)
    Coevolution—reciprocal evolutionary change between interacting lineages (Thompson, 1994; see Glossary)—is thought to have played a profound role in the evolution of Life on Earth. From similar patterns across the wings of unrelated lineages of butterflies (Hoyal Cuthill and Charleston, 2015), egg mimicry of “cheating” brood parasites (Davies, 2010), to the role of animal pollinators in driving the diversification of flowering plants (Kay and Sargent, 2009), to the ubiquity of sexual reproduction and sexual conflicts (Hamilton, 2002; Arnqvist and Rowe, 2005; King et al., 2009), the formation of the eukaryotic cell (Martin et al., 2015; Imachi et al., 2020), and evenmore »the origin of living organisms themselves (Mizuuchi and Ichihashi, 2018), evolutionary changes among interacting lineages have played profound and important roles in the history of Life. This Grand Challenges inaugural contribution encompasses eclectic opinions of the editorial board as to what are the next frontiers of coevolution research in the 21st century. Coevolutionary biology is a field that has garnered a lot of attention in recent years, in part as a result of technical advances in nucleotide sequencing and bioinformatics in the burgeoning field of host–microbial interactions. Many seminal studies of coevolution examined reciprocal evolutionary change between two or a few interacting macroscopic species that imposed selective pressures on one another (e.g., insect or bird pollinators and their flowering host plants). Understanding the contexts under which coevolution occurs, as opposed to scenarios in which each partner adapts independently to a particular environment (Darwin, 1862; Stiles, 1978) is important to elucidate coevolutionary processes. A whole spectrum of organismal interactions has been examined under the lens of coevolution, providing additional context, and nuance to ecological strategies traditionally categorized as ranging from beneficial to detrimental for participating species (Figure 1). In particular, a coevolutionary perspective has revealed that even “mutualisms” are not always fully beneficial or cooperative for the partners involved. Instead, the tendency to “cheat” permeates across symbiotic partnerships (Perez-Lamarque et al., 2020). Conversely, recent evidence suggests that non-lethal predation by co-evolved predators, which has traditionally been assumed to be entirely antagonistic, may provide sessile prey with some indirect benefit through enhanced opportunities to acquire beneficial symbiotic microorganisms (Grupstra et al., 2021). Herein, we discuss some of the recent areas of active research in coevolution, restricting our focus to coevolution between interacting species.« less
    Free, publicly-accessible full text available January 6, 2023
  3. Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF),Macrosteles quadrilineatus(Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes:Nasuia(112 kb)more »andSulcia(190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.

    « less
  4. Abstract Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies,more »ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.« less
  5. A bstract A search is presented for a heavy W′ boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using proton-proton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb − 1 at a center-of-mass energy of 13 TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and ofmore »the t quark are selected using jet substructure techniques to reduce standard model backgrounds, resulting in a distinct three-jet W′ boson decay signature. No significant deviation in data with respect to the standard model background prediction is observed. Upper limits are set at 95% confidence level on the product of the W′ boson cross section and the final state branching fraction. A W′ boson with a mass below 3.1 TeV is excluded, given the benchmark model assumption of democratic branching fractions. In addition, limits are set based on generalizations of these assumptions. These are the most sensitive limits to date for this final state.« less
    Free, publicly-accessible full text available September 1, 2023