 Home
 Search Results
 Page 1 of 1
Search for: All records

Total Resources1
 Resource Type

10
 Availability

10
 Author / Contributor
 Filter by Author / Creator


Gordon, S. L. (1)

Kumar, V. M. (1)

Schulman, L. J. (1)

Srivastava, P. (1)

#Tyler Phillips, Kenneth E. (0)

& AbreuRamos, E. D. (0)

& Ahmed, Khadija. (0)

& AkcilOkan, O. (0)

& Akuom, D. (0)

& Aleven, V. (0)

& AndrewsLarson, C. (0)

& Archibald, J. (0)

& Attari, S. Z. (0)

& Ayala, O. (0)

& Babbitt, W. (0)

& Baek, Y. (0)

& Bahabry, Ahmed. (0)

& Bai, F. (0)

& Balasubramanian, R. (0)

& BarthCohen, L. (0)

 Filter by Editor


& Spizer, S. M. (0)

& . Spizer, S. (0)

& Ahn, J. (0)

& Bateiha, S. (0)

& Bosch, N. (0)

& Chen, B. (0)

& Chen, Bodong (0)

& Drown, S. (0)

& Higgins, A. (0)

& Kali, Y. (0)

& RuizArias, P.M. (0)

& S. Spitzer (0)

& Spitzer, S. (0)

& Spitzer, S.M. (0)

:Chaosong Huang, Gang Lu (0)

A. Agarwal (0)

A. Beygelzimer (0)

A. E. Lischka (0)

A. E. Lischka, E. B. (0)

A. E. Lischka, E.B. Dyer (0)


Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

An important achievement in the field of causal inference was a complete characterization of when a causal effect, in a system modeled by a causal graph, can be determined uniquely from purely observational data. The identification algorithms resulting from this work produce exact symbolic expressions for causal effects, in terms of the observational probabilities. More recent work has looked at the numerical properties of these expressions, in particular using the classical notion of the condition number. In its classical interpretation, the condition number quantifies the sensitivity of the output values of the expressions to small numerical perturbations in the input observational probabilities. In the context of causal identification, the condition number has also been shown to be related to the effect of certain kinds of uncertainties in the structure of the causal graphical model. In this paper, we first give an upper bound on the condition number for the interesting case of causal graphical models with small “confounded components”. We then develop a tight characterization of the condition number of any given causal identification problem. Finally, we use our tight characterization to give a specific example where the condition number can be much lower than that obtained via generic boundsmore »