skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Goring, Simon J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Terrestrial pollen records are abundant and widely distributed, making them an excellent proxy for past vegetation dynamics. Age-depth models relate pollen samples from sediment cores to a depositional age based on the relationship between sample depth and available chronological controls. Large-scale synthesis of pollen data benefit from consistent treatment of age uncertainties. Generating new age models helps to reduce potential artifacts from legacy age models that used outdated techniques. Traditional age-depth models, often applied for comparative purposes, infer ages by fitting a curve between dated samples. Bacon, based on Bayesian theory, simulates the sediment deposition process, accounting for both variable deposition rates and temporal/spatial autocorrelation of deposition from one sample to another within the core. Bacon provides robust uncertainty estimation across cores with different depositional processes. We use Bacon to estimate pollen sample ages from 554 North American sediment cores. This dataset standardizes age-depth estimations, supporting future large spatial-temporal studies and removes a challenging, computationally-intensive step for scientists interested in questions that integrate across multiple cores.

     
    more » « less