skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gorman, J. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In activities such as dancing and sports, people synchronize behaviors in many different ways. Synchroni- zation between people has traditionally been characterized as either perfect mirroring (1:1 in-phase synchronization, spontaneous synchrony, and mimicry) or reflectional mir- roring (1:1 antiphase synchronization), but most activities require partners to synchronize more complicated patterns. We asked visually coupled dyads to coordinate finger move- ments to perform multifrequency ratios (1:1, 2:1, 3:1, 4:1, and 5:1). Because these patterns are coordinated across and not just within individual physiological and motor systems, we based our predictions on frequency-locking dynamics, which is a general coordination principle that is not limited to physiological explanations. Twenty dyads performed five multifrequency ratios under three levels of visual coupling, with half using a subcritical visual information update rate. The dynamical principle was supported, such that multi- frequency performance tends to abide by the strictures of frequency locking. However, these constraints are relaxed if the visual information rate is beyond the critical informa- tion update rate. An analysis of turning points in the oscil- latory finger movements suggested that dyads did not rely on this visual information to stabilize coordination. How the laboratory findings align with naturalistic observa- tions of multifrequency performance in actual sports teams (Double Dutch) is discussed. Frequency-locking accounts not only for the human propensity for perfect mirroring but also for variations in performance when dyads deviate from mirroring. 
    more » « less