skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gorman, Jamie C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resilient teams overcome sudden, dynamic changes by enacting rapid, adaptive responses that maintain system effectiveness. We analyzed two experiments on human-autonomy teams (HATs) operating a simulated remotely piloted aircraft system (RPAS) and correlated dynamical measures of resilience with measures of team performance. Across both experiments, HATs experienced automation and autonomy failures, using a Wizard of Oz paradigm. Team performance was measured in multiple ways, using a mission-level performance score, a target processing efficiency score, a failure overcome score, and a ground truth resilience score. Novel dynamical systems metrics of resilience measured the timing of system reorganization in response to failures across RPAS layers, including vehicle, controls, communications layers, and the system overall. Time to achieve extreme values of reorganization and novelty of reorganization were consistently correlated with target processing efficiency and ground truth resilience across both studies. Correlations with mission-level performance and the overcome score were apparent but less consistent. Across both studies, teams displayed greater system reorganization during failures compared to routine task conditions. The second experiment revealed differential effects of team training focused on coordination coaching and trust calibration. These results inform the measurement and training of resilience in HATs using objective, real-time resilience analysis. 
    more » « less
  2. Collaborative problem solving (CPS) is an important skill in the modern workforce, and due to its interactive nature, is challenging to assess. The present study builds on work in team sciences to provide initial validation for a metric that quantifies CPS influence—the extent to which each individual contributes toward the team’s CPS processes—using average mutual information (AMI). The measure is investigated in teams collaborating in a computer programming task, where one teammate was assigned to a controller role (i.e., the only person who engaged with the task interface directly). Results suggest the controller had more influence over the team’s CPS processes than the other participants in the triad, providing initial validation for the influence metric. Future work will investigate the measure in classrooms and multiple modalities, and extend the metric in real-time to understand how influence fluctuates over the course of collaboration. 
    more » « less
  3. ObjectiveThis study examines low-, medium-, and high-performing Human-Autonomy Teams’ (HATs’) communication strategies during various technological failures that impact routine communication strategies to adapt to the task environment. BackgroundTeams must adapt their communication strategies during dynamic tasks, where more successful teams make more substantial adaptations. Adaptations in communication strategies may explain how successful HATs overcome technological failures. Further, technological failures of variable severity may alter communication strategies of HATs at different performance levels in their attempts to overcome each failure. MethodHATs in a Remotely Piloted Aircraft System-Synthetic Task Environment (RPAS-STE), involving three team members, were tasked with photographing targets. Each triad had two randomly assigned participants in navigator and photographer roles, teaming with an experimenter who simulated an AI pilot in a Wizard of Oz paradigm. Teams encountered two different technological failures, automation and autonomy, where autonomy failures were more challenging to overcome. ResultsHigh-performing HATs calibrated their communication strategy to the complexity of the different failures better than medium- and low-performing teams. Further, HATs adjusted their communication strategies over time. Finally, only the most severe failures required teams to increase the efficiency of their communication. ConclusionHAT effectiveness under degraded conditions depends on the type of communication strategies enacted by the team. Previous findings from studies of all-human teams apply here; however, novel results suggest information requests are particularly important to HAT success during failures. ApplicationUnderstanding the communication strategies of HATs under degraded conditions can inform training protocols to help HATs overcome failures. 
    more » « less
  4. While there is increased interest in how trust spreads in Human Autonomy Teams (HATs), most trust measurements are subjective and do not examine real-time changes in trust. To develop a trust metric that consists of objective variables influenced by trust/distrust manipulations, we conducted an Interactive hybrid Cognitive Task Analysis (IhCTA) for a Remotely Piloted Aerial System (RPAS) HAT. The IhCTA adapted parts of the hybrid Cognitive Task Analysis (hCTA) framework. In this paper, we present the four steps of the IhCTA approach, including 1) generating a scenario task overview, 2) generating teammate-specific event flow diagrams, 3) identifying interactions and interdependencies impacted by trust/distrust manipulations, and 4) processing RPAS variables based on the IhCTA to create a metric. We demonstrate the application of the metric through a case study that examines how the influence of specific interactions on team state changes before and after the spread of distrust. 
    more » « less
  5. Trust plays a critical role in the success of human-robot teams (HRTs). While typically studied as a perceptual attitude, trust also encompasses individual dispositions and interactive behaviors like compliance. Anthropomorphism, the attribution of human-like qualities to robots, is a related phenomenon that designers often leverage to positively influence trust. However, the relationship of anthropomorphism to perceptual, dispositional, and behavioral trust is not fully understood. This study explores how anthropomorphism moderates these relationships in a virtual urban search and rescue HRT scenario. Our findings indicate that the moderating effects of anthropomorphism depend on how a robot’s recommendations and its confidence in them are communicated through text and graphical information. These results highlight the complexity of the relationships between anthropomorphism, trust, and the social conveyance of information in designing for safe and effective human-robot teaming. 
    more » « less
  6. Abstract The Institute for Student‐AI Teaming (iSAT) addresses the foundational question:how to promote deep conceptual learning via rich socio‐collaborative learning experiences for all students?—a question that is ripe for AI‐based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human‐agent teaming, computer‐supported collaborative learning, expansive co‐design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members. 
    more » « less
  7. The goal of the Space Challenge project is to identify the challenges faced by teams in space operations and then represent those challenges in a distributed human-machine teaming scenario that resembles typical space operations and to measure the coordination dynamics across the entire system. Currently, several challenges have been identified through semi-structured interviews with nine subject matter experts (SMEs) who were astronauts or those who have experienced or have been involved with interplanetary space exploration. We conducted a thematic analysis on the interviews through an iterative process. Challenges were categorized into four categories, including, communication, training, distributed teaming, and complexity. Based on the findings, challenges and key teamwork characteristics of space operations were integrated into the initial scenario development. In addition to the scenario, we plan to use dynamical system methods to analyze team activity in real time. 
    more » « less
  8. ObjectiveThis review and synthesis examines approaches for measuring and assessing team coordination dynamics (TCD). The authors advance a system typology for classifying TCD approaches and their applications for increasing levels of dynamic complexity. BackgroundThere is an increasing focus on how teams adapt their coordination in response to changing and uncertain operational conditions. Understanding coordination is significant because poor coordination is associated with maladaptive responses, whereas adaptive coordination is associated with effective responses. This issue has been met with TCD approaches that handle increasing complexity in the types of TCD teams exhibit. MethodA three-level system typology of TCD approaches for increasing dynamic complexity is provided, with examples of research at each level. For System I TCD, team states converge toward a stable, fixed-point attractor. For System II TCD, team states are periodic, which can appear complex, yet are regular and relatively stable. In System III TCD, teams can exhibit periodic patterns, but those patterns change continuously to maintain effectiveness. ResultsSystem I and System II are applicable to TCD with known or discoverable behavioral attractors that are stationary across mid-to long-range timescales. System III TCD is the most generalizable to dynamic environments with high requirements for adaptive coordination across a range of timescales. ConclusionWe outline current challenges for TCD and next steps in this burgeoning field of research. ApplicationSystem III approaches are becoming widespread, as they are generalizable to time- and/or scale-varying TCD and multimodal analyses. Recommendations for deploying TCD in team settings are provided. 
    more » « less