- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Gorodetsky, Ofir (1)
-
Matomäki, Kaisa (1)
-
Radziwiłł, Maksym (1)
-
Rodgers, Brad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We evaluate asymptotically the variance of the number of squarefree integers up to x in short intervals of length $$H < x^{6/11 - \varepsilon }$$ H < x 6 / 11 - ε and the variance of the number of squarefree integers up to x in arithmetic progressions modulo q with $$q > x^{5/11 + \varepsilon }$$ q > x 5 / 11 + ε . On the assumption of respectively the Lindelöf Hypothesis and the Generalized Lindelöf Hypothesis we show that these ranges can be improved to respectively $$H < x^{2/3 - \varepsilon }$$ H < x 2 / 3 - ε and $$q > x^{1/3 + \varepsilon }$$ q > x 1 / 3 + ε . Furthermore we show that obtaining a bound sharp up to factors of $$H^{\varepsilon }$$ H ε in the full range $$H < x^{1 - \varepsilon }$$ H < x 1 - ε is equivalent to the Riemann Hypothesis. These results improve on a result of Hall (Mathematika 29(1):7–17, 1982) for short intervals, and earlier results of Warlimont, Vaughan, Blomer, Nunes and Le Boudec in the case of arithmetic progressions.more » « less
An official website of the United States government
