Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Teherani, Ferechteh H ; Rogers, David J (Ed.)Free, publicly-accessible full text available March 15, 2025
-
Low resistance non-alloyed ohmic contacts are realized by a metal-first process on homoepitaxial, heavily n+ doped (010) β-Ga2O3. The resulting contacts have a contact resistance (Rc) as low as 0.23 Ω-mm on an as-grown sample and exhibit nearly linear ohmic behavior even without a post-metallization anneal. The metal-first process was applied to form non-alloyed contacts on n+ (010) β-Ga2O3 grown by metal-organic chemical vapor deposition (MOCVD) as well as suboxide molecular beam epitaxy. Identical contacts fabricated on similar MOCVD samples by conventional liftoff processing exhibit highly rectifying Schottky behavior. Re-processing using the metal-first process after removal of the poor contacts by conventional methods does not improve the contacts; however, addition of a Ga-flux polishing step followed by re-processing using a metal-first process again results in low resistance, nearly linear ohmic contacts. The liftoff process, therefore, does not reliably render nearly linear ohmic behavior in non-alloyed contacts. Furthermore, no interface contamination was detected by x-ray photoelectron spectroscopy. This suggests that during the initial liftoff processing, a detrimental layer may form at the interface, likely modification of the Ga2O3 surface, that is not removable during the contact removal process but that can be removed by Ga-flux polishing.
-
Optimizing thermal anneals of Si-implanted β-Ga2O3 is critical for low resistance contacts and selective area doping. We report the impact of annealing ambient, temperature, and time on the activation of room temperature ion-implanted Si in β-Ga2O3 at concentrations from 5 × 1018 to 1 × 1020 cm−3, demonstrating full activation (>80% activation, mobilities >70 cm2/V s) with contact resistances below 0.29 Ω mm. Homoepitaxial β-Ga2O3 films, grown by plasma-assisted molecular beam epitaxy on Fe-doped (010) substrates, were implanted at multiple energies to yield 100 nm box profiles of 5 × 1018, 5 × 1019, and 1 × 1020 cm−3. Anneals were performed in an ultra-high vacuum-compatible quartz furnace at 1 bar with well-controlled gas compositions. To maintain β-Ga2O3 stability, pO2 must be greater than 10−9 bar. Anneals up to pO2 = 1 bar achieve full activation at 5 × 1018 cm−3, while 5 × 1019 cm−3 must be annealed with pO2 ≤ 10−4 bar, and 1 × 1020 cm−3 requires pO2 < 10−6 bar. Water vapor prevents activation and must be maintained below 10−8 bar. Activation is achieved for anneal temperatures as low as 850 °C with mobility increasing with anneal temperatures up to 1050 °C, though Si diffusion has been reported above 950 °C. At 950 °C, activation is maximized between 5 and 20 min with longer times resulting in decreased carrier activation (over-annealing). This over-annealing is significant for concentrations above 5 × 1019 cm−3 and occurs rapidly at 1 × 1020 cm−3. Rutherford backscattering spectrometry (channeling) suggests that damage recovery is seeded from remnant aligned β-Ga2O3 that remains after implantation; this conclusion is also supported by scanning transmission electron microscopy showing retention of the β-phase with inclusions that resemble the γ-phase.
Free, publicly-accessible full text available January 7, 2025 -
We report the use of suboxide molecular-beam epitaxy (S-MBE) to grow β-Ga2O3 at a growth rate of ∼1 μm/h with control of the silicon doping concentration from 5 × 1016 to 1019 cm−3 . In S-MBE, pre-oxidized gallium in the form of a molecular beam that is 99.98% Ga2O, i.e., gallium suboxide, is supplied. Directly supplying Ga2O to the growth surface bypasses the rate-limiting frst step of the two-step reaction mechanism involved in the growth of β-Ga2O3 by conventional MBE. As a result, a growth rate of ∼1 μm/h is readily achieved at a relatively low growth temperature (Tsub ≈ 525 ○C), resulting in flms with high structural perfection and smooth surfaces (rms roughness of <2 nm on ∼1 μm thick flms). Silicon-containing oxide sources (SiO and SiO2) producing an SiO suboxide molecular beam are used to dope the β-Ga2O3 layers. Temperature-dependent Hall effect measurements on a 1 μm thick flm with a mobile carrier concentration of 2.7 × 1017 cm−3 reveal a room-temperature mobility of 124 cm2 V−1 s −1 that increases to 627 cm2 V −1 s−1 at 76 K; the silicon dopants are found to exhibit an activation energy of 27 meV. We also demonstrate working metal–semiconductor feld-effect transistors made from these silicon-doped β-Ga2O3 flms grown by S-MBE at growth rates of ∼1 μm/h.more » « less