skip to main content

Search for: All records

Creators/Authors contains: "Goswami, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changesmore »in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size.« less
  2. Tunneling field effect transistors (TFETs) have gained much interest in the previous decade for use in low power CMOS electronics due to their sub-thermal switching [1]. To date, all TFETs are fabricated as vertical nanowires or fins with long, difficult processes resulting in long learning cycle and incompatibility with modern CMOS processing. Because most TFETs are heterojunction TFETs (HJ-TFETs), the geometry of the device is inherently vertically because dictated by the orientation of the tunneling HJ, achieved by typical epitaxy. Template assisted selective epitaxy was demonstrated for vertical nanowires [2] and horizontally arranged nanorods [3] for III-V on Si integration.more »In this work, we report results on the area selective and template assisted epitaxial growth of InP, utilizing SiO2 based confined structures on InP substrates, which enables horizontal HJs, that can find application in the next generation of TFET devices. The geometries of the confined structures used are so that only a small area of the InP substrate, dubbed seed, is visible to the growth atmosphere. Growth is initiated selectively only at the seed and then proceeds in the hollow channel towards the source hole. As a result, growth resembles epitaxial lateral overgrowth from a single nucleation point [4], reaping the benefits of defect confinement and, contrary to spontaneous nanowire growth, allows orientation in an arbitrary, template defined direction. Indium phosphide 2-inch (110) wafers are used as the starting substrate. The process flow (Fig.1) consists of two plasma enhanced chemical vapor deposition (PECVD) steps of SiO2, appropriately patterned with electron beam lithography (EBL), around a PECVD amorphous silicon sacrificial layer. The sacrificial layer is ultimately wet etched with XeF2 to form the final, channel like template. Not shown in the schematic in Fig.1 is an additional, ALD deposited, 3 nm thick, alumina layer which prevents plasma damage to the starting substrate and is removed via a final tetramethylammonium hydroxide (TMAH) based wet etch. As-processed wafers were then diced and loaded in a Thomas Swan Horizontal reactor. Successful growth conditions found were 600°C with 4E6 mol/min of group III precursor, a V/III ratio of 400 and 8 lpm of hydrogen as carrier gas. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) were used as In and P precursors respectively. Top view SEM (Fig.2) confirms growth in the template thanks to sufficient Z-contrast despite the top oxide layer, not removed before imaging. TEM imaging shows a cross section of the confined structure taken at the seed hole (Fig.3). The initial growth interface suggests growth was initiated at the seed hole and atomic order of the InP conforms to the SiO2 template both at the seed and at the growth front. A sharp vertical facet is an encouraging result for the future development of vertical HJ based III-V semiconductor devices.« less
  3. Abstract The multiplicity dependence of the pseudorapidity density of charged particles in proton–proton (pp) collisions at centre-of-mass energies $$\sqrt{s}~=~5.02$$ s = 5.02 , 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range ( $$|\eta | < 1.5$$ | η | < 1.5 ). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval $$|\eta |<1$$ | η | < 1 . The multiplicity dependence of the pseudorapidity density of charged particles is measured with mid- and forward rapidity multiplicity estimators, the lattermore »being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. The results can be used to constrain models for particle production as a function of multiplicity in pp collisions.« less
  4. Abstract The production of $$\pi ^{\pm }$$ π ± , $$\mathrm{K}^{\pm }$$ K ± , $$\mathrm{K}^{0}_{S}$$ K S 0 , $$\mathrm{K}^{*}(892)^{0}$$ K ∗ ( 892 ) 0 , $$\mathrm{p}$$ p , $$\phi (1020)$$ ϕ ( 1020 ) , $$\Lambda $$ Λ , $$\Xi ^{-}$$ Ξ - , $$\Omega ^{-}$$ Ω - , and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of $$\sqrt{s}$$ s = 13 TeV at midrapidity ( $$|y|<0.5$$ | y | < 0.5 ) as a function of transverse momentum ( $$p_{\mathrm{T}}$$ p T ) using the ALICE detector at the CERNmore »LHC. Furthermore, the single-particle $$p_{\mathrm{T}}$$ p T distributions of $$\mathrm{K}^{0}_{S}$$ K S 0 , $$\Lambda $$ Λ , and $$\overline{\Lambda }$$ Λ ¯ in inelastic pp collisions at $$\sqrt{s} = 7$$ s = 7  TeV are reported here for the first time. The $$p_{\mathrm{T}}$$ p T distributions are studied at midrapidity within the transverse momentum range $$0\le p_{\mathrm{T}}\le 20$$ 0 ≤ p T ≤ 20 GeV/ c , depending on the particle species. The $$p_{\mathrm{T}}$$ p T spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower $$\sqrt{s}$$ s and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high $$p_{\mathrm{T}}$$ p T with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and $$x_{\mathrm{T}}\equiv 2p_{\mathrm{T}}/\sqrt{s}$$ x T ≡ 2 p T / s scaling properties of hadron production are also studied. As the collision energy increases from $$\sqrt{s}$$ s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of $$\sqrt{s}$$ s , while ratios for multi-strange hadrons indicate enhancements. The $$p_\mathrm{{T}}$$ p T -differential cross sections of $$\pi ^{\pm }$$ π ± , $$\mathrm {K}^{\pm }$$ K ± and $$\mathrm {p}$$ p ( $$\overline{\mathrm{p}}$$ p ¯ ) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for $$\pi ^{\pm }$$ π ± and $$\mathrm{p}$$ p ( $$\overline{\mathrm{p}}$$ p ¯ ) at high $$p_\mathrm{{T}}$$ p T .« less