skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goswami, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 7, 2026
  2. Abstract We analyzed the 7.92 × 1011cosmic-ray-induced muon events collected by the IceCube Neutrino Observatory from 2011 May 13, when the fully constructed experiment started to take data, to 2023 May 12. This data set provides an up-to-date cosmic-ray arrival direction distribution in the Southern Hemisphere with unprecedented statistical accuracy covering more than a full period length of a solar cycle. Improvements in Monte Carlo event simulation and better handling of year-to-year differences in data processing significantly reduce systematic uncertainties below the level of statistical fluctuations compared to the previously published results. We confirm the observation of a change in the angular structure of the cosmic-ray anisotropy between 10 TeV and 1 PeV, more specifically in the 100–300 TeV energy range. For the first time, we analyzed the angular power spectrum at different energies. The observed variations of the power spectra with energy suggest relatively reduced large-scale features at high energy compared to those of medium and small scales. The large volume of data enhances the statistical significance at higher energies, up to the PeV scale, and smaller angular scales, down to approximately 6° compared to previous findings. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  3. Abstract While the sources of the diffuse astrophysical neutrino flux detected by the IceCube Neutrino Observatory are still largely unknown, one of the promising methods to improve our understanding of them is investigating the potential temporal and spatial correlations between neutrino alerts and the electromagnetic radiation from blazars. We report on the multiwavelength target-of-opportunity observations of the blazar B3 2247+381, taken in response to an IceCube multiplet alert for a cluster of muon neutrino events compatible with the source location between 2022 May 20 and 2022 November 10. B3 2247+381 was not detected with VERITAS during this time period. The source was found to be in a low-flux state in the optical, ultraviolet, and gamma-ray bands for the time interval corresponding to the neutrino event, but was detected in the hard X-ray band with NuSTAR during this period. We find the multiwavelength spectral energy distribution is described well using a simple one-zone leptonic synchrotron self-Compton radiation model. Moreover, assuming the neutrinos originate from hadronic processes within the jet, the neutrino flux would be accompanied by a photon flux from the cascade emission, and the integrated photon flux required in such a case would significantly exceed the total multiwavelength fluxes and the VERITAS upper limits presented here. The lack of flaring activity observed with VERITAS, combined with the low multiwavelength flux levels, as well as the significance of the neutrino excess being at a 3σlevel (uncorrected for trials), makes B3 2247+381 an unlikely source of the IceCube multiplet. We conclude that the neutrino excess is likely a background fluctuation. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026
  4. Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  5. The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on Ar 40 and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called “brems flipping,” as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE’s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  6. Free, publicly-accessible full text available November 1, 2025
  7. Abstract The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  8. This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  9. Top-quark pair production is observed in lead–lead ( Pb + Pb ) collisions at s NN = 5.02 TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb 1 . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is σ t t ¯ = 3.6 0.9 + 1.0 ( stat ) 0.5 + 0.8 ( syst ) μ b , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available April 1, 2026