skip to main content


Search for: All records

Creators/Authors contains: "Gotti, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay (0 νββ ) in 130 Te. CUORE uses a cryogenic array of 988 TeO 2 calorimeters operated at ∼10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors' energy-dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors. 
    more » « less
  2. Abstract An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, μBq/kg, level of the LMO crystals radioactive contamination by 228 Th and 226 Ra. 
    more » « less
  3. Abstract CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ∼250 kg of isotopic mass of 100 Mo. It will operate at ∼10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of 100 Mo-enriched Li 2 MoO 4 crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70–90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained high energy resolutions at the 356 keV line from a 133 Ba source, as good as Ge semiconductor γ detectors in this energy range. 
    more » « less
  4. ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and7GeV/cbeam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be380±26mbarnsfor the6GeV/csetting and379±35mbarnsfor the7GeV/csetting.

    Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. Abstract

    The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for$$0\nu \beta \beta $$0νββdecay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$${\mathrm{TeO}}_{2}$$TeO2crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$$3{\mathrm{rd}}$$3rdresult of the search for$$0\nu \beta \beta $$0νββ, corresponding to a tonne-year of$$\mathrm{TeO}_{2}$$TeO2exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$0\nu \beta \beta $$0νββdecay in$${}^{130}\mathrm{Te}$$130Teever conducted . We present the current status of CUORE search for$$0\nu \beta \beta $$0νββwith the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$${}^{130}\mathrm{Te}$$130Te$$2\nu \beta \beta $$2νββdecay half-life and decay to excited states of$${}^{130}\mathrm{Xe}$$130Xe, studies performed using an exposure of 300.7 kg yr.

     
    more » « less
  6. A<sc>bstract</sc>

    A comprehensive study of the local and nonlocal amplitudes contributing to the decayB0K*0(→K+π)μ+μis performed by analysing the phase-space distribution of the decay products. The analysis is based onppcollision data corresponding to an integrated luminosity of 8.4 fb1collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient$$ {\mathcal{C}}_9 $$C9, responsible for vector dimuon currents, exhibits a 2.1σdeviation from the Standard Model expectation. The Wilson Coefficients$$ {\mathcal{C}}_{10} $$C10,$$ {\mathcal{C}}_9^{\prime } $$C9and$$ {\mathcal{C}}_{10}^{\prime } $$C10are all in better agreement than$$ {\mathcal{C}}_9 $$C9with the Standard Model and the global significance is at the level of 1.5σ. The model used also accounts for nonlocal contributions fromB0→ K*0[τ+τ→ μ+μ] rescattering, resulting in the first direct measurement of thebsττvector effective-coupling$$ {\mathcal{C}}_{9\tau } $$C9τ.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  7. A search for hidden-charm pentaquark states decaying to a range ofΣcD¯andΛc+D¯final states, as well as doubly charmed pentaquark states toΣcDandΛc+D, is made using samples of proton-proton collision data corresponding to an integrated luminosity of5.7fb1recorded by the LHCb detector ats=13TeV. Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of theΛc+baryon in theΛc+pKπ+decay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases.

    © 2024 CERN, for the LHCb Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available August 1, 2025