Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent drought, wildfires and rising temperatures in the western US highlight the urgency of increasing resiliency in overstocked forests. However, limited valuation information hinders the broader participation of beneficiaries in forest management. We assessed how historical disturbances in California's Central Sierra Nevada affected live biomass, forest water use and carbon uptake and estimated marginal values of these changes. On average, low‐severity wildfire caused greater declines in forest evapotranspiration (ET), gross primary productivity (GPP) and live biomass than did commercial thinning. Low‐severity wildfires represent proxies for prescribed burns and both function as biomass removal to alleviate overstocked conditions. Increases in potential runoff over 15 years post‐disturbance were valued at $108,000/km2for commercial thinning versus $234,000/km2for low‐severity wildfire, based on historical water prices. Respective declines in GPP were valued at −$305,000 and −$1,317,000/km2, based on an average social cost of carbon. Considering biomass levels created by commercial thinning and low‐severity fire as more‐sustainable management baselines for overstocked forests, carbon uptake over 15 years post‐disturbance can be viewed as a benefit rather than loss. Realizing this benefit upon management re‐entry may require sequestering thinned material. High‐severity wildfire and clearcutting resulted in greater declines in ET and thus greater potential water benefits but also substantial declines in GPP and live carbon. These lessons from historical disturbances indicate what benefit ranges from fuels treatments can be expected from more‐sustainable management of mixed‐conifer forests and the importance of setting an appropriate baseline.more » « lessFree, publicly-accessible full text available April 1, 2025
-
Abstract Anthropogenic climate change has increased the frequency of drought, wildfire, and invasions of non‐native species. Although high‐severity fires linked to drought can inhibit recovery of native vegetation in forested ecosystems, it remains unclear how drought impacts the recovery of other plant communities following wildfire. We leveraged an existing rainfall manipulation experiment to test the hypothesis that reduced precipitation, fuel load, and fire severity convert plant community composition from native shrubs to invasive grasses in a Southern California coastal sage scrub system. We measured community composition before and after the 2020 Silverado wildfire in plots with three rainfall treatments. Drought reduced fuel load and vegetation cover, which reduced fire severity. Native shrubs had greater prefire cover in added water plots compared to reduced water plots. Native cover was lower and invasive cover was higher in postfire reduced water plots compared to postfire added and ambient water plots. Our results demonstrate the importance of fuel load on fire severity and plant community composition on an ecosystem scale. Management should focus on reducing fire frequency and removing invasive species to maintain the resilience of coastal sage scrub communities facing drought. In these communities, controlled burns are not recommended as they promote invasive plants.
Free, publicly-accessible full text available April 1, 2025 -
Abstract Through their rooting profiles and water demands, plants affect the distribution of water in the soil profile. Simultaneously, soil water content controls plant development and interactions within and between plant communities. These plant-soil water feedbacks might vary across plant communities with different rooting depths and species composition. In semiarid environments, understanding these differences will be essential to predict how ecosystems will respond to drought, which may become more frequent and severe with climate change. In this study, we tested how plant-soil water feedbacks responded to drought in two contrasting ecosystem types—grassland and shrubland—in the coastal foothills of southern California. During years 5–8 of an ongoing precipitation manipulation experiment, we measured changes in plant communities and soil moisture up to 2 m depth. We observed different water use patterns in grassland and shrubland communities with distinct plant functional types and water use strategies. Drought treatment did not affect perennial, deep-rooted shrubs because they could access deep soil water pools. However, mid-rooted shrubs were sensitive to drought and experienced decreased productivity and die-off. As a result, water content actually increased with drought at soil depths from 50–150 cm. In grassland, biomass production by annual species, including annual grasses and forbs, declined with drought, resulting in lower water uptake from the surface soil layer. An opportunistic “live fast, die young“ life strategy allowed these species to recover quickly once water availability increased. Our results show how drought interacts with plant community composition to affect the soil water balance of semiarid ecosystems, information that could be integrated into global scale models.
-
Wildfire modifies the short- and long-term exchange of carbon between terrestrial ecosystems and the atmosphere, with impacts on ecosystem services such as carbon uptake. Dry western US forests historically experienced low-intensity, frequent fires, with patches across the landscape occupying different points in the fire-recovery trajectory. Contemporary perturbations, such as recent severe fires in California, could shift the historic stand-age distribution and impact the legacy of carbon uptake on the landscape. Here, we combine flux measurements of gross primary production (GPP) and chronosequence analysis using satellite remote sensing to investigate how the last century of fires in California impacted the dynamics of ecosystem carbon uptake on the fire-affected landscape. A GPP recovery trajectory curve of more than five thousand fires in forest ecosystems since 1919 indicated that fire reduced GPP by 157.4 ± 7.3 g C m − 2 y − 1 ( mean ± SE, n = 1926 ) in the first year after fire, with average recovery to prefire conditions after ∼ 12 y. The largest fires in forested ecosystems reduced GPP by 393.8 ± 15.7 g C m − 2 y − 1 ( n = 401) and took more than two decades to recover. Recent increases in fire severity and recovery time have led to nearly 9.9 ± 3.5 MMT CO 2 (3-y rolling mean) in cumulative forgone carbon uptake due to the legacy of fires on the landscape, complicating the challenge of maintaining California’s natural and working lands as a net carbon sink. Understanding these changes is paramount to weighing the costs and benefits associated with fuels management and ecosystem management for climate change mitigation.more » « less
-
Abstract Climate change is expected to increase drought intensity and frequency, which are commonly predicted will threaten the survival of forests. Most forest die‐off projections assume that recent tree mortality will not alter die‐off severity during subsequent droughts. We tested this assumption by comparing die‐off in semi‐arid conifer forest stands in California that were exposed to a single drought in 2012–2015 (“
2nd Drought Only ”) with forest stands that experienced drought in both 1999–2002 and 2012–2015 (“Both Droughts ”). We quantified die‐off severity as a reduction in the satellite observed Normalized Difference Moisture Index, and cumulative moisture deficit as negative 4‐year Precipitation minus Evapotranspiration (4‐year Pr‐ET overdraft). Here we show that recent tree morality reduces die‐off severity in semi‐arid conifer forests exposed to subsequent drought. Stands in the2nd Drought Only sample experienced severe die‐off associated with extreme 4‐year Pr‐ET overdraft in 2012–2015. Stands in theBoth Droughts sample experienced severe die‐off and 4‐year Pr‐ET overdraft in 1999–2002, but comparatively little 2012–2015 die‐off despite continued 4‐year Pr‐ET overdraft. We interpret this as a dampening effect, where prior tree mortality reduces forest die‐off severity during subsequent drought exposure. As forests continue to experience disturbances linked to climate change, dampening effects will impose a transient, and perhaps long‐term, constraint on the impact of repeated drought. -
Abstract Changing wildfire regimes in the western US and other fire-prone regions pose considerable risks to human health and ecosystem function. However, our understanding of wildfire behavior is still limited by a lack of data products that systematically quantify fire spread, behavior and impacts. Here we develop a novel object-based system for tracking the progression of individual fires using 375 m Visible Infrared Imaging Radiometer Suite active fire detections. At each half-daily time step, fire pixels are clustered according to their spatial proximity, and are either appended to an existing active fire object or are assigned to a new object. This automatic system allows us to update the attributes of each fire event, delineate the fire perimeter, and identify the active fire front shortly after satellite data acquisition. Using this system, we mapped the history of California fires during 2012–2020. Our approach and data stream may be useful for calibration and evaluation of fire spread models, estimation of near-real-time wildfire emissions, and as means for prescribing initial conditions in fire forecast models.more » « less